Пусть дан т-к АВС.
Продлим медианы на их длину ( см. рис)
По свойству диагоналей параллелограмма
АА1²+ВС²=2(АВ²+АС²)
и
СС1²+АВ²=2(АС²+ВС²)
Пусть АВ=с, ВС=а
Составим систему уравнений:
[(2*6√7)²+a²=2(c²+14²)
[(2*3√7)²+c²=2(14²+a²)
⇒
[ а²-2с²=2*14² -144*7
[-2а²+с²=2*14²-36*7 домножим на 2 обе стороны этого уравнения.
Сложим уравнения системы:
[а²-2с=2*14² -144*7
[-4а²+2с²=4*14²-72*7
-3а²=6*14²-216*7⇒
а²=112
а=4√7
Подставим найденное значение а в уравнение
а²-2с²=2*14² -144*7 ⇒
112+144*7-2*196=2 с²
с²=364
с=2√91
АВ=2√91
ВС=4√7
---------
Задачу можно решить по т. косинусов.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
Тогда АО=4√7, CO=2√7
Из ∆ АОС
АС²=АО²+СО²-2*АО*СО*cos ∠АОС
cos ∠АОС=(АС²-АО²+СО²):(-2*АО*СО)
cos ∠АОС=[14²-(4√7)²-(2√7)²]:[-2*(4√7)*(2√7]
cos ∠АОС= -56:2*56= -1/2 - это косинус 120º
В ∆ СОК ∠ СОК =180°-120°=60°
ОК=АК:3=2√7
ОК=ОС, угол СОК=60°⇒
∆ СОК - правильный, СК=2√7,
ВС=2 СК=4√7
В Δ АМО ∠ МОА=∠ СОК=60°
АМ²=МО+АО-2*МО*АО*cos∠АОМ
АМ²=(√7)²+(4√7)²-2*(√7)*(4√7)*1/2*cos∠АОМ
АМ²=7+16*7-2*4*7*1/2
АМ²=91
АМ=√91
AB=2√91
x+y=П ,x=П-y
cos(x-y)=1 , cos(П-у-у)=1 , cos(П-2y)=1
П-2y=arccos1=2Пк
-2y=2Пк-П
у=П/2-Пк
х=П-(П/2-Пк)=П-П/2+Пк=П2+Пк
1)
tg5x=sin5x/cos5x
tg3x=sin3x/cos3x
sin5x sin3x sin5x*cos3x-cos5x*sin3
cos5x - cos3x = cos5x*cos3x
Числитель сворачиваем по формуле sin (a-b)=sina *cosb-cosa*sinb
sin(5x-3x)
cos5x*cos3x = 0
cos5x*cos3x 0
5x arccos0 ,x П/10+Пк/5
3x arccos0 ,x П/6+Пк/3
Числитель равен нулю
sin(5x-3x)=0
sin2x=0
2sinx*cosx=0
sinx=0 или cosx=0
x=Пк или х=П/2+Пк
Пусть дан т-к АВС.
Продлим медианы на их длину ( см. рис)
По свойству диагоналей параллелограмма
АА1²+ВС²=2(АВ²+АС²)
и
СС1²+АВ²=2(АС²+ВС²)
Пусть АВ=с, ВС=а
Составим систему уравнений:
[(2*6√7)²+a²=2(c²+14²)
[(2*3√7)²+c²=2(14²+a²)
⇒
[ а²-2с²=2*14² -144*7
[-2а²+с²=2*14²-36*7 домножим на 2 обе стороны этого уравнения.
Сложим уравнения системы:
[а²-2с=2*14² -144*7
[-4а²+2с²=4*14²-72*7
-3а²=6*14²-216*7⇒
а²=112
а=4√7
Подставим найденное значение а в уравнение
а²-2с²=2*14² -144*7 ⇒
112+144*7-2*196=2 с²
с²=364
с=2√91
АВ=2√91
ВС=4√7
---------
Задачу можно решить по т. косинусов.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
Тогда АО=4√7, CO=2√7
Из ∆ АОС
АС²=АО²+СО²-2*АО*СО*cos ∠АОС
cos ∠АОС=(АС²-АО²+СО²):(-2*АО*СО)
cos ∠АОС=[14²-(4√7)²-(2√7)²]:[-2*(4√7)*(2√7]
cos ∠АОС= -56:2*56= -1/2 - это косинус 120º
В ∆ СОК ∠ СОК =180°-120°=60°
ОК=АК:3=2√7
ОК=ОС, угол СОК=60°⇒
∆ СОК - правильный, СК=2√7,
ВС=2 СК=4√7
В Δ АМО ∠ МОА=∠ СОК=60°
АМ²=МО+АО-2*МО*АО*cos∠АОМ
АМ²=(√7)²+(4√7)²-2*(√7)*(4√7)*1/2*cos∠АОМ
АМ²=7+16*7-2*4*7*1/2
АМ²=91
АМ=√91
AB=2√91