Для построения графика надо составить таблицу значений функции при заданных значениях аргумента: х -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 у 26 15 6 -1 -6 -9 -10 -9 -6 -1 6 15 26. По графику ответить на заданные вопросы. Проверку правильности можно выполнить аналитически:
График функции х²+4х-2 - это парабола ветвями вверх (коэффициент при х² - положителен). 1.Значение у при х=1,5. Надо в уравнение подставить вместо х его значение: у = 1,5² + 4*1,5 - 2 = 2,25 + 6 - 2 = 6,25.
2.Значение х при у=4. Надо решить квадратное уравнение: 4 = х² + 4х - 2 х² + 4х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=4^2-4*1*(-6)=16-4*(-6)=16-(-4*6)=16-(-24)=16+24=40; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√40-4)/(2*1)=√40/2-4/2=√40/2-2 ≈ 1.162278; x_2=(-√40-4)/(2*1)=-√40/2-4/2=-√40/2-2 ≈ -5.162278.
3.Значение х при котором у>0. На основании ответа на вопрос № 2 (где у = 0) больше 0 значения У будут при Х < -5.162278 и X > 1.162278.
4.Промежуток в котором функция возрастает определяется вершиной параболы: Хо = -в / 2а = -4 / 2 = -2 Уо = 1 - 8 - 6 = -13. До значения Х = -2 функция убывает, при Х > -2 функция возрастает.
Объяснение:
Система уравнений:
x/2 +y/2 -2xy=16 |×2
x+y=-2
x+y-4xy=32
-2-4xy=32
-4xy=32+2
-4xy=34 |2
x=-17/(2y)
-17/(2y) +y=-2
(-17+2y²)/(2y)=-2
-17+2y²=-4y
2y²+4y-17=0; D=16+136=152
y₁=(-4-2√38)4=(-2-√38)/2
y₂=(-4+2√38)4=(√38 -2)/2
x₁+(-2-√38)/2=-2; x₁=(-4+2+√38)/2=(√38 -2)/2
x₂+(√38 -2)/2=-2; x₂=(-4-√38 +2)/2=(-2-√38)/2
ответ: ((√38 -2)/2; (-2-√38)/2); ((-2-√38)/2; (√38 -2)/2).
Система уравнений:
x/2 +y/2 +2xy=4
x-y=4
x/2 +y/2 +2xy=x-y |×2
x+y+4xy=2x-2y
4xy=2x-2y-x-y
4xy=x-3y
x-4xy=3y
x(1-4y)=3y
x=(3y)/(1-4y)
(3y)/(1-4y) -y=4
(3y-y+4y²)/(1-4y)=4
2(y+2y²)=4(1-4y) |2
2y²+y-2+8y=0
2y²+9y-2=0; D=81+16=97
y₁=(-9-√97)/4
y₂=(-9+√97)/4=(√97 -9)/4
x₁ -(-9-√97)/4=4; x₁=(16-9-√97)/4=(7-√97)/4
x₂ -(√97 -9)/4=4; x₂=(16+√97 -9)/4=(7+√97)/4
ответ: ((7-√97)/4; (-9-√97)/4); ((7+√97)/4; (√97 -9)/4).
х -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4
у 26 15 6 -1 -6 -9 -10 -9 -6 -1 6 15 26.
По графику ответить на заданные вопросы.
Проверку правильности можно выполнить аналитически:
График функции х²+4х-2 - это парабола ветвями вверх (коэффициент при х² - положителен).
1.Значение у при х=1,5.
Надо в уравнение подставить вместо х его значение:
у = 1,5² + 4*1,5 - 2 = 2,25 + 6 - 2 = 6,25.
2.Значение х при у=4.
Надо решить квадратное уравнение:
4 = х² + 4х - 2
х² + 4х - 6 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=4^2-4*1*(-6)=16-4*(-6)=16-(-4*6)=16-(-24)=16+24=40;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√40-4)/(2*1)=√40/2-4/2=√40/2-2 ≈ 1.162278;
x_2=(-√40-4)/(2*1)=-√40/2-4/2=-√40/2-2 ≈ -5.162278.
3.Значение х при котором у>0.
На основании ответа на вопрос № 2 (где у = 0) больше 0 значения У будут при Х < -5.162278 и X > 1.162278.
4.Промежуток в котором функция возрастает определяется вершиной параболы:
Хо = -в / 2а = -4 / 2 = -2
Уо = 1 - 8 - 6 = -13.
До значения Х = -2 функция убывает, при Х > -2 функция возрастает.