Решите уравнение
1. sin²x - sin x = 0 ;
2. 2cos²x - sin x - 1 = 0 .
- - - - - - - - - - - - -
1.
sin²x - sin x =0 ⇔sinx(sinx - 1) =0 ⇔ [ sinx =0 ; sinx -1 =0 .( совокупность ур.)
а) sinx = 0 ⇒ x =πk , k∈ℤ .
б) sinx =1 ⇒ x =π/2+ 2πn , n∈ℤ .
- - -
2.
2cos²x - sin x - 1 = 0 ;
2(1 -sin²x) - sin x - 1 = 0 ;
2 -2sin²x - sin x - 1 = 0 ;
-2sin²x - sin x + 1 = 0 ;
2sin²x + sin x - 1 = 0 ;
sinx =(-1±√( (1 -4*2(-1) ) ) /2*2
а) sinx = (-1 -3) /4 = - 1 ⇒ x = -π/2 +2πk , k ∈ℤ ;
б) sinx = (-1 +3) /4 = 1/2 ⇒ x = (-1)ⁿπ/6 +πn , n ∈ℤ .
Решите уравнение
1. sin²x - sin x = 0 ;
2. 2cos²x - sin x - 1 = 0 .
- - - - - - - - - - - - -
1.
sin²x - sin x =0 ⇔sinx(sinx - 1) =0 ⇔ [ sinx =0 ; sinx -1 =0 .( совокупность ур.)
а) sinx = 0 ⇒ x =πk , k∈ℤ .
б) sinx =1 ⇒ x =π/2+ 2πn , n∈ℤ .
- - -
2.
2cos²x - sin x - 1 = 0 ;
2(1 -sin²x) - sin x - 1 = 0 ;
2 -2sin²x - sin x - 1 = 0 ;
-2sin²x - sin x + 1 = 0 ;
2sin²x + sin x - 1 = 0 ;
sinx =(-1±√( (1 -4*2(-1) ) ) /2*2
а) sinx = (-1 -3) /4 = - 1 ⇒ x = -π/2 +2πk , k ∈ℤ ;
б) sinx = (-1 +3) /4 = 1/2 ⇒ x = (-1)ⁿπ/6 +πn , n ∈ℤ .
216x^3 - 1 = (6x)^3 - 1^3 = (6x-1)(36x^2+6x+1)
100b^2 - 140bx^2 + 49x^4 = (10b - 7x^2)^2=(10b-7x^2)(10b-7x^2)
125b^3 + 27 = (5b + 3)(25b^2 - 15b + 9)
(5a - 1/5)^2 = 25a^2 - 2a + 1/25)
(3a - 5b^2)(9a^2 + 15ab^2 + 25b^4) = (3a)^3 - (5b^2)^3 = 27a^3 - 125b^6
(0,8x+ 5)(5 - 0,8x) = (5 + 0,8x)(5 - 0,8x) = 5^2 - (0,8x)^2 = 25 - 0,64x^2
(7x+ 0,4)^2 = 49x^2 + 5,6x + 0,16
(6y + 1)(36y^2 - 6y + 1) = (6y)^3 + 1^3 = 216y^3 + 1
25x^2 + 60xy + 36y^2 = (5x + 6y)^2 = (5x + 6y)(5x + 6y).