Знайдіть суму нескінченної геометричної прогресії (bn) якщо q=1/2, b5= корень из 2/16 a) 2 корень из 2 б) -2 корень из 2 в) корень из двух/2 г) корень из 2 д) 2 корень из 2/3
Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид
f(f(x))=x
Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x
sqrt(3a+x)=x, x>=0
3a+x=x^2
x^2-x-3a=0
D=1+12a
Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.
x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1
Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.
Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.
здесь, автор пытался донести, что нам нужно домножить на определенные числа, дабы получить общий знаменатель 6а³(а-b)(a+b)²
При этом, он имел ввиду, что умножение на второй знаменатель можно произвести по разному:
1) если использовать общий множитель
6а³(b-a)(a+b)² , то домножить нужно на 2а²(а+b), и это действительно не принципиально, но тогда третий множитель будет "страдать" - нужно будет домножить его уже со знаком "-": -(a+b)², чтобы при умножении, как вы и сказали: (а-b) = -(b-a) и при умножении двух минусов, мы получаем знак "+"
, так и наоборот для второго случая:
2)если использовать общий множитель
6а³(а-b)(a+b)² , то домножить второй знаменатель нужно на -2а²(а+b)!
А третий на (a+b)², с плюсовым перед стоящим знаком.
И не забываем так же про первый знаменатель :)
Тут всё дело в том, какой общий множитель вы захотите использовать.
ответ:a<-1/12
Объяснение:
Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид
f(f(x))=x
Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x
sqrt(3a+x)=x, x>=0
3a+x=x^2
x^2-x-3a=0
D=1+12a
Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.
x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1
Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.
Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.
D=1+12a<0 <=> a<-1/12
Объяснение:
так, рассмотрим этот пример:
Пример 3, упростить выражение:
здесь, автор пытался донести, что нам нужно домножить на определенные числа, дабы получить общий знаменатель 6а³(а-b)(a+b)²
При этом, он имел ввиду, что умножение на второй знаменатель можно произвести по разному:
1) если использовать общий множитель
6а³(b-a)(a+b)² , то домножить нужно на 2а²(а+b), и это действительно не принципиально, но тогда третий множитель будет "страдать" - нужно будет домножить его уже со знаком "-": -(a+b)², чтобы при умножении, как вы и сказали: (а-b) = -(b-a) и при умножении двух минусов, мы получаем знак "+"
, так и наоборот для второго случая:
2)если использовать общий множитель
6а³(а-b)(a+b)² , то домножить второй знаменатель нужно на -2а²(а+b)!
А третий на (a+b)², с плюсовым перед стоящим знаком.
И не забываем так же про первый знаменатель :)
Тут всё дело в том, какой общий множитель вы захотите использовать.
Надеюсь, понятно объяснил.