Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – Область определения функции. Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций, где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на (множестве всех действительных чисел). За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной, навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс», для которых существуют значения «игреков». Рассмотрим условный пример:
Область определения данной функции представляет собой объединение промежутков: (для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения, поэтому графика там нет.Да, кстати, если что-нибудь не понятно из терминологии и/или содержания первых абзацев, таки лучше вернуться к статьям Множества и действия над ними, Графики и свойства элементарных функций.Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:
1 - вся работа 1/2 - за 1 день делают бригады, работая вместе, т.е. их совместная производительность За х дней может убрать весь урожай первая бригада за у дней может убрать весь урожай вторая бригада 1/х - производительность первой бригады 1/у - производительность второй бригады Первое уравнение 1/х + 1/у = 1/2 Второе уравнение 1/3 ; 1/х + 2/3 : 1/у = 4 Преобразуем второе х/3 + 2у/3 = 4 => х + 2у = 12 Получилась система {1/х + 1/у = 1/2 {х + 2у = 12 Из второго уравнения выразим х = 12 - 2у подставим в первое 1/(12 - 2у) + 1/у = 1/2 При у ≠ 2 имеем 2у + 24 - 4у = 12у - 2у² 2у² - 14у + 24 = 0 Сократив на 2, получим у² - 7у + 12 = 0 D = 49 - 48 = 1 y = (7 + 1)/2 = 4 y = (7 - 1)/2 = 3 Лри у = 4 получим х = 12 - 2*4 = 4, т.е. {4; 4} При у = 3 получим х = 12 - 2 * 3 = 6 {6; 3} Проверка 1/3 : 1/6 + 2/3 : 1/3 = 4 2 + 2 = 4 4=4 И 1/3 : 1/4 + 2/3 : 1/4 = 4 4/3 + 8/3 = 4 12/3 = 2 4 = 4 ответ: {4; 4} и {6; 3}
Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения, поэтому графика там нет.Да, кстати, если что-нибудь не понятно из терминологии и/или содержания первых абзацев, таки лучше вернуться к статьям Множества и действия над ними, Графики и свойства элементарных функций.Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:
1/2 - за 1 день делают бригады, работая вместе, т.е. их совместная производительность
За х дней может убрать весь урожай первая бригада
за у дней может убрать весь урожай вторая бригада
1/х - производительность первой бригады
1/у - производительность второй бригады
Первое уравнение
1/х + 1/у = 1/2
Второе уравнение
1/3 ; 1/х + 2/3 : 1/у = 4
Преобразуем второе
х/3 + 2у/3 = 4 => х + 2у = 12
Получилась система
{1/х + 1/у = 1/2
{х + 2у = 12
Из второго уравнения выразим х = 12 - 2у
подставим в первое
1/(12 - 2у) + 1/у = 1/2 При у ≠ 2 имеем
2у + 24 - 4у = 12у - 2у²
2у² - 14у + 24 = 0
Сократив на 2, получим
у² - 7у + 12 = 0
D = 49 - 48 = 1
y = (7 + 1)/2 = 4
y = (7 - 1)/2 = 3
Лри у = 4 получим х = 12 - 2*4 = 4, т.е. {4; 4}
При у = 3 получим х = 12 - 2 * 3 = 6 {6; 3}
Проверка
1/3 : 1/6 + 2/3 : 1/3 = 4
2 + 2 = 4
4=4
И
1/3 : 1/4 + 2/3 : 1/4 = 4
4/3 + 8/3 = 4
12/3 = 2
4 = 4
ответ: {4; 4} и {6; 3}