Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных) Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит Если 0<x<1то для каждой степени а значит л.ч. < --(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1 иначе для суммы первых натуральных чисел справедлива формула )
При x=1 Получаем равенство 1+2+...+20=210 x=1 - решение
и При x>1 получаем что л.ч. больше правой так как и л.ч. > ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных)
Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит
Если 0<x<1то
для каждой степени
а значит л.ч. <
--(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1
иначе для суммы первых натуральных чисел справедлива формула
)
При x=1
Получаем равенство 1+2+...+20=210
x=1 - решение
и При x>1 получаем что л.ч. больше правой так как
и л.ч. >
ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
y₄-y₂=-24 y₁*q³-y₁*q=-24 y₁*q*(q²-1)=-24 y₁*q*(q-1)*(q+1)=-24
y₃+y₂=6 y₁*q²+y₁*q=6 y₁*q*(q+1)=6 y₁*q*(q+1)=6
Разделим первое уравнение на второе:
q-1=-4
q=-3
y₁*(-3)*(-3+1)=6
y₁*(-3)*(-2)=6
6*y₁=6 |÷6
y₁=1.
Sn=y₁*(qⁿ-1)/(q-1)=0,5*((-3)ⁿ-1)/(-3-1)=-182
1*((-3)ⁿ-1)=-182*(-4)
(-3)ⁿ-1=728
(-3)ⁿ=729
(-3)ⁿ=3⁶
(-3)ⁿ=(-3)⁶
n=6.
ответ: y₁=1 q=-3 n=6.
3+7+11+...+x=136 ⇒
a₁=3
d=7-3=4 Sₓ=136 x=?
Sₓ=(2a₁+(n-1)*d)*n/2=136
(2*3+(n-1)*4)*n/2=136
(6+4n-4)*n/2=136
(2+4n)*n/2=136
(1+2n)*n=136
2n²+n-136=0 D=1089 √D=33
n₁=8 n₂=-8,5 ∉ ⇒
x=a₁+d*(n-1)=3+4*(8-1)=3+4*7=3+28=31.
ответ: x=31.