Каждое уравнение системы определяет на плоскости некоторое множество точек A1, A2, ..., An (может быть пустое или одну точку или бесконечно много точек). Решением систему уравнений называют пересечение всех этих множеств, то есть
A= A1 ∩ A2 ∩ ... ∩An.
Если
1) множество A состоит только из одной точки, то система уравнений имеет одно решение;
2) множество A пустое, то система уравнений не имеет решений;
3) множество A состоит из бесконечно много точек, то система уравнений имеет бесконечно много решений.
В частном случае можем рассмотреть систему линейных уравнений:
в которой, каждое из уравнений системы определяет на плоскости некоторую прямую.
Тогда возможны случаи:
1. Если все прямые совпадают, то система имеет бесконечное количество решений - так как в этом случае точек пересечений бесконечно много.
2. Если хотя бы 2 прямые системы параллельны, то есть не совпадают, то система не имеет решения - так как в этом случае нет точки пересечения.
3. Если все прямые имеют одну точку пересечения, то система имеет одно решение.
Два пешехода вместе км. (расписываю, чтобы с ледующий раз не писала в ответы, а решала сама) . Как известно, расстояние -это скорость Х время, отс. след. 17 км = скорость 1пешехода Х Время (он был в пути 0,5+1,5ч) +скорость 2 пешехода Х Время (1,5 ч) . Вылазит формула: 2х + 1,5у = 17 у - х = 2 (это скорость первого меньше на два км/ч)
Выводим х из второго уравнения х = у-2 Подставляем в первое уравнение 2*(у-2) + 1,5у = 17 2у-4 +1,5у =17 3,5у =17+4 = 21 у =21/ 3,5 =6 км/ч СКОРОСТЬ ВТОРОГО ПЕШЕГОДА 6 - 2 = 4 км/ч СКОРОСТЬ ПЕРВОГО
Рассмотрим систему уравнений
Каждое уравнение системы определяет на плоскости некоторое множество точек A1, A2, ..., An (может быть пустое или одну точку или бесконечно много точек). Решением систему уравнений называют пересечение всех этих множеств, то есть
A= A1 ∩ A2 ∩ ... ∩An.
Если
1) множество A состоит только из одной точки, то система уравнений имеет одно решение;
2) множество A пустое, то система уравнений не имеет решений;
3) множество A состоит из бесконечно много точек, то система уравнений имеет бесконечно много решений.
В частном случае можем рассмотреть систему линейных уравнений:
в которой, каждое из уравнений системы определяет на плоскости некоторую прямую.
Тогда возможны случаи:
1. Если все прямые совпадают, то система имеет бесконечное количество решений - так как в этом случае точек пересечений бесконечно много.
2. Если хотя бы 2 прямые системы параллельны, то есть не совпадают, то система не имеет решения - так как в этом случае нет точки пересечения.
3. Если все прямые имеют одну точку пересечения, то система имеет одно решение.
2х + 1,5у = 17
у - х = 2 (это скорость первого меньше на два км/ч)
Выводим х из второго уравнения х = у-2
Подставляем в первое уравнение 2*(у-2) + 1,5у = 17
2у-4 +1,5у =17
3,5у =17+4 = 21
у =21/ 3,5 =6 км/ч СКОРОСТЬ ВТОРОГО ПЕШЕГОДА
6 - 2 = 4 км/ч СКОРОСТЬ ПЕРВОГО