Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -0,8 и х= 5, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>= 0 (график выше оси Ох) при х∈[-0,8; 5].
Причём х= -0,8 и х= 5 входят в интервал решений неравенства.
Неравенство нестрогое, скобки квадратные.
Решение неравенства х∈[-0,8; 5].
2) - х² + 2х + 15 > 0;
Приравнять к нулю и решить как квадратное уравнение:
- х² + 2 х + 15 = 0/-1 Уравнение параболы, график которой строить.
х² - 2 х - 15 = 0
D=b²-4ac = 4 + 60 = 64 √D= 8
х₁=(-b-√D)/2a
х₁=(2-8)/2
х₁= -6/2
х₁= -3;
х₂=(-b+√D)/2a
х₂=(2+8)/2
х₂=10/2
х₂=5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -3 и х= 5, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у > 0 (график выше оси Ох) при х∈(-3; 5).
Пусть второй кран опорожнит полную ванну pf Х мин.
_____________________________________________________
А Р (1/мин) t (мин)
_______________________________________________________
2 кран 1 - 1/X Х
-----------------------------------------------------------------------------------------------
1 кран 1 1/(X+2) X +2
-----------------------------------------------------------------------------------------------
1 + 2 -1 1/(X+2) - 1/X 60
вместе
________________________________________________________
Последняя строка таблицы говорит о том что ванна полностью опорожнилась за 60 минут, т.е.
второй корень посторонний.
ОТВЕТ: второй кран опорожнит полную ванну за 10 минут.
Объяснение:
Удачи!
В решении.
Объяснение:
Решить неравенство:
1) (5 - х)(х + 0,8) >= 0
Раскрыть скобки:
5х + 4 - х² - 0,8х >= 0
-х² + 4,2х + 4 >= 0
Приравнять к нулю и решить как квадратное уравнение:
-х² + 4,2х + 4 = 0/-1 Уравнение параболы, график которой строить.
х² - 4,2х - 4 = 0
D=b²-4ac = 17,64 + 16 = 33,64 √D= 5,8
х₁=(-b-√D)/2a
х₁=(4,2-5,8)/2
х₁= -1,6/2
х₁= -0,8;
х₂=(-b+√D)/2a
х₂=(4,2+5,8)/2
х₂=10/2
х₂=5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -0,8 и х= 5, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>= 0 (график выше оси Ох) при х∈[-0,8; 5].
Причём х= -0,8 и х= 5 входят в интервал решений неравенства.
Неравенство нестрогое, скобки квадратные.
Решение неравенства х∈[-0,8; 5].
2) - х² + 2х + 15 > 0;
Приравнять к нулю и решить как квадратное уравнение:
- х² + 2 х + 15 = 0/-1 Уравнение параболы, график которой строить.
х² - 2 х - 15 = 0
D=b²-4ac = 4 + 60 = 64 √D= 8
х₁=(-b-√D)/2a
х₁=(2-8)/2
х₁= -6/2
х₁= -3;
х₂=(-b+√D)/2a
х₂=(2+8)/2
х₂=10/2
х₂=5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -3 и х= 5, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у > 0 (график выше оси Ох) при х∈(-3; 5).
Неравенство строгое, скобки круглые.
Решение неравенства х∈(-3; 5).