Доказать неравенство: а⁴+b⁴ ≥ a³b+ab³ Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0 Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим: Нам надо доказать ≥. Значит, будем смотреть разность и она должна быть ≥ 0 а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) = =(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒ ⇒ а⁴+b⁴ ≥ a³b+ab³
Обозначим через x забор/час скорость покраски забора Игорем, за y забор/час – скорость покраски забора Пашей, и за z забор/час – скорость покраски забора Володей. Из задачи следует, что суммарная скорость покраски забора Игорем и Пашей составляет 1/10, то есть
.
Суммарная скорость покраски забора Пашей и Володей, равна , и суммарная скорость покраски забора Игорем и Володей, составляет . Получаем систему из трех уравнений:
Складывая все три уравнения, получаем
или в виде
,
то есть все втроем они покрасят забор за 9 часов, что составляет минут.
Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0
Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим:
Нам надо доказать ≥.
Значит, будем смотреть разность и она должна быть ≥ 0
а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) =
=(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒
⇒ а⁴+b⁴ ≥ a³b+ab³
.
Суммарная скорость покраски забора Пашей и Володей, равна , и суммарная скорость покраски забора Игорем и Володей, составляет . Получаем систему из трех уравнений:
Складывая все три уравнения, получаем
или в виде
,
то есть все втроем они покрасят забор за 9 часов, что составляет минут.
ответ: 540.