Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
нужно Учесть что к примеру 1 игрок играет с 5 и мы посчитали эту партию в играх первого игрока, но 5 так же играет с первым и ему мы тоже эту игру посчитали. Значит одну и туже партию посчитали ДВАЖДЫ. И таких повторяющихся партий у каждого игрока
Значит общее количество партий необходимо разделить на 2
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
Рассуждаем так
пронумеруем игроков
1, 2, 3, 4, 5, 6, ..., n
тогда первый игрок будет играть с (n-1) человеком
второй так же и всего игроков n
Значит количество партий n(n-1) НО!
нужно Учесть что к примеру 1 игрок играет с 5 и мы посчитали эту партию в играх первого игрока, но 5 так же играет с первым и ему мы тоже эту игру посчитали. Значит одну и туже партию посчитали ДВАЖДЫ. И таких повторяющихся партий у каждого игрока
Значит общее количество партий необходимо разделить на 2
Итого количество n(n-1) /2
составим уравнение
отрицательным количество игроков быть не может
Значит ответ 16 человек приняло участие в турнире