Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой: 0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально. 1. Вычисляется площадь фигуры под ; 2. Теперь — под ; 3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :) Попробую сейчас проверить решение.
Тільки по графіку можна одразу вказати, при яких значеннях аргументу значення функції додатні
Приклад: Використовуючи графік функції у = х2 – 1, де -3 ≤ х ≤ 2, знайти значення аргументу, при яких функція набуває додатних значень;
Для значень х таких, що -3 < х < -1, точки графіка розташовані вище осі абсцис. Тому функція набуває додатних значень при -3 < х < -1. Так само вище осі абсцис знаходяться точки графіка для 1 < х < 2. Тому при 1 < х < 2 функція знову набуває додатних значень. Отже, при -3 < х < -1 або 1 < х < 2 функція набуває додатних значень.
Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой:
0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально.
1. Вычисляется площадь фигуры под ;
2. Теперь — под ;
3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :)
Попробую сейчас проверить решение.
upd: да, всё сошлось.
Тільки по графіку можна одразу вказати, при яких значеннях аргументу значення функції додатні
Приклад: Використовуючи графік функції у = х2 – 1, де -3 ≤ х ≤ 2, знайти значення аргументу, при яких функція набуває додатних значень;
Для значень х таких, що -3 < х < -1, точки графіка розташовані вище осі абсцис. Тому функція набуває додатних значень при -3 < х < -1. Так само вище осі абсцис знаходяться точки графіка для 1 < х < 2. Тому при 1 < х < 2 функція знову набуває додатних значень. Отже, при -3 < х < -1 або 1 < х < 2 функція набуває додатних значень.