Обозначим искомые числа через 10a+b. Тогда при возведении в квадрат по требованию задачи должны выполняться условия: b^2 должно быть числом, оканчивающимся на цифру b. Таких цифр четыре: 0, 1, 5 и 6. Пусть наше число оканчивается на 0. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это невозможно, поскольку b=0. Пусть искомое число оканчивается на 1. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это также невозможно, поскольку число 2*a может оканчиваться на цифру a только при a=0, но a - первая цифра в нашем числе и a ≠ 0. Пусть теперь наше число оканчивается на 5. Тогда должно выполняться условие: число 2*a*b+2 должно оканчиваться на a. Этому условию удовлетворяют a=2, b=5. Т. о. 25^2 = 625 оканчивается на 25. Поскольку последние две цифры в числе будут оставаться 2 и 5, то при возведении в любую натуральную степень соответствующие числа будут оканчиваться на 25. Поэтому число 25 нам подходит. Пусть искомое число оканчивается на 6. Тогда должно соблюдаться 2*a*b+3 должно оканчиваться на a. Т. к. b=6, то a*12+3 оканчивается на a. Отсюда находим, что a=7. Т. о. получаем второе число, которое также при возведении в любую натуральную степень будет оканчиваться на 76. Это единственные два двузначных числа, удовлетворяющие требованиям.
Дана функция y = (x^4 - 16)/x^2.
Производная равна y' = 4x - (2(x^4 - 16)/x^3) = (2x^4 + 32)/x^3.
Находим нули функции. Для этого приравниваем производную к нулю (достаточно числитель):
2·x^4+32 = 0
Для данного уравнения корней нет.
Функция не имеет экстремумов.
Так как функция имеет разрыв в точке х = 0, то находим знаки производной на промежутках:
x ∈ (-∞ ;0) x ∈ (0; +∞)
f'(x) < 0 f'(x) > 0
функция убывает функция возрастает
Обозначим искомые числа через 10a+b. Тогда при возведении в квадрат по требованию задачи должны выполняться условия: b^2 должно быть числом, оканчивающимся на цифру b. Таких цифр четыре: 0, 1, 5 и 6. Пусть наше число оканчивается на 0. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это невозможно, поскольку b=0. Пусть искомое число оканчивается на 1. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это также невозможно, поскольку число 2*a может оканчиваться на цифру a только при a=0, но a - первая цифра в нашем числе и a ≠ 0. Пусть теперь наше число оканчивается на 5. Тогда должно выполняться условие: число 2*a*b+2 должно оканчиваться на a. Этому условию удовлетворяют a=2, b=5. Т. о. 25^2 = 625 оканчивается на 25. Поскольку последние две цифры в числе будут оставаться 2 и 5, то при возведении в любую натуральную степень соответствующие числа будут оканчиваться на 25. Поэтому число 25 нам подходит. Пусть искомое число оканчивается на 6. Тогда должно соблюдаться 2*a*b+3 должно оканчиваться на a. Т. к. b=6, то a*12+3 оканчивается на a. Отсюда находим, что a=7. Т. о. получаем второе число, которое также при возведении в любую натуральную степень будет оканчиваться на 76. Это единственные два двузначных числа, удовлетворяющие требованиям.
ответ: 25 и 76.