Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77. Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115 115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115 114-2=112 дробей несократимы
(y-2)^2; (y+2)^2
(7x-3)^2; (7x+3)^2
(8m^3-7)^2; (8m^3+7)^2
(-6-10p)^2; (-6+10p)^2
(2x-3y)^2; (2x+3y)^2
(5e-4q)^2; (5e+4q)^2
(9t+3z)^2 (это квадрат разности!); (9t-3z)^2 (это квадрат суммы!)
(2d+5d)^2 = (7d)^2 (разности!); (2d-5d)^2 = (-3d)^2 = (3d)^2 (суммы!)
2)
72^2 = (70 + 2)^2 = 70^2 + 2*70*2 + 2^2 = 4900+280+4 = 5184
31^2 = (30+1)^2 = 30^2 + 2*30*1 + 1^2 = 900 + 60 + 1 = 961
3,2^2 = (3 + 0,2)^2 = 3^2 + 2*3*0,2 + 0,2^2 = 9 + 1,2 + 0,04 = 10,24
6,3^2 = (6 + 0,3)^2 = 6^2 + 2*6*0,3 + 0,3^2 = 36+3,6+0,09 = 39,69
2,95^2 = (3-0,05)^2 = 3^2-2*3*0,05+0,05^2 = 9-0,3+0,0025 = 8,7025
9,99^2=(10-0,01)^2=10^2-2*10*0,01+0,0001=100-0,2+0,0001=99,8001
6160 2 (6160 : 2 = 3080)
3080 2 (3080 : 2 = 1540)
1540 2 (1540 : 2 = 770)
770 2 (770 : 2 = 385)
385 5 (385 : 5 = 77)
77 7 (77 : 7 = 11)
11 11 (11 : 11 = 1)
1
6160 = 2 · 2 · 2 · 2 · 5 · 7 · 11
Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77.
Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115
115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115
114-2=112 дробей несократимы