знайдить все тригонометрични функции кута при мож висотою и бычною стороною рівнобедриного трикутника якщо основа та бічна сторона наного трикутника дорівнюють відповідно 6 см та 5 см
Задача решается через систему двух уравнений с двумя переменными. Пусть скорость третьего велосипедиста равна v км/ч, а t ч - время, за которое он догнал второго велосипедиста. До встречи третий и второй велосипедисты проехали одно и то же расстояние. По условию задачи, второй ехал на 1 час больше, чем третий. Тогда t+1 ч - время второго Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t v*t второй 21 t+1 21*(t+1)
Составляем первое уравнение: vt=21(t+1)
До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов, а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего. Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t+9 v*(t+9) второй 24 t+11 24*(t+11) Составляем второе уравнение: v(t+9)=24(t+11)
Решаем систему уравнений: { vt=21(t+1) => v=21(t+1)/t (подставим во второе уравнение) { v(t+9)=24(t+11)
Итак, t=3 часа Находим скорость третьего велосипедиста: (км/ч)
Задача решается через систему двух уравнений с двумя переменными. Пусть скорость третьего велосипедиста равна v км/ч, а t ч - время, за которое он догнал второго велосипедиста. До встречи третий и второй велосипедисты проехали одно и то же расстояние. По условию задачи, второй ехал на 1 час больше, чем третий. Тогда t+1 ч - время второго Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t v*t второй 21 t+1 21*(t+1)
Составляем первое уравнение: vt=21(t+1)
До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов, а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего. Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t+9 v*(t+9) второй 24 t+11 24*(t+11) Составляем второе уравнение: v(t+9)=24(t+11)
Решаем систему уравнений: { vt=21(t+1) => v=21(t+1)/t (подставим во второе уравнение) { v(t+9)=24(t+11)
Итак, t=3 часа Находим скорость третьего велосипедиста: (км/ч)
Пусть скорость третьего велосипедиста равна v км/ч,
а t ч - время, за которое он догнал второго велосипедиста.
До встречи третий и второй велосипедисты проехали одно и то же расстояние.
По условию задачи, второй ехал на 1 час больше, чем третий.
Тогда t+1 ч - время второго
Получаем:
Скорость (км/ч) Время (ч) Расстояние (км)
третий v t v*t
второй 21 t+1 21*(t+1)
Составляем первое уравнение: vt=21(t+1)
До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов,
а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего.
Получаем:
Скорость (км/ч) Время (ч) Расстояние (км)
третий v t+9 v*(t+9)
второй 24 t+11 24*(t+11)
Составляем второе уравнение: v(t+9)=24(t+11)
Решаем систему уравнений:
{ vt=21(t+1) => v=21(t+1)/t (подставим во второе уравнение)
{ v(t+9)=24(t+11)
Итак, t=3 часа
Находим скорость третьего велосипедиста:
(км/ч)
ответ: 28 км/ч
Пусть скорость третьего велосипедиста равна v км/ч,
а t ч - время, за которое он догнал второго велосипедиста.
До встречи третий и второй велосипедисты проехали одно и то же расстояние.
По условию задачи, второй ехал на 1 час больше, чем третий.
Тогда t+1 ч - время второго
Получаем:
Скорость (км/ч) Время (ч) Расстояние (км)
третий v t v*t
второй 21 t+1 21*(t+1)
Составляем первое уравнение: vt=21(t+1)
До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов,
а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего.
Получаем:
Скорость (км/ч) Время (ч) Расстояние (км)
третий v t+9 v*(t+9)
второй 24 t+11 24*(t+11)
Составляем второе уравнение: v(t+9)=24(t+11)
Решаем систему уравнений:
{ vt=21(t+1) => v=21(t+1)/t (подставим во второе уравнение)
{ v(t+9)=24(t+11)
Итак, t=3 часа
Находим скорость третьего велосипедиста:
(км/ч)
ответ: 28 км/ч