1) Точки пересечения с осями. - с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16). - с осью Ох: у = 0. x^3+x^2-16x-16 = 0. Преобразуем заданное уравнение: у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1). у = 0, (х-4)(х+4)(х+1) = 0. Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.
2) Для того, чтобы найти экстремумы, нужно найти производную и приравнять её нулю и корни этого уравнения будут экстремумами данной функции: y' = 3x² + 2 x - 16 = 0.
Значит, экстремумы в точках: ((-8/3); (400/27)), (2, -36).
3) Определяем минимумы и максимумы функции и промежутки знакопостоянства. Для этого находим значения производной вблизи критических точек. х = -3 -2.667 -2 1 2 3 у' = 5 0 -8 -11 0 17.
Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).
Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,
а убывает на промежутке (-8/3) < x < 2.
4) Найдем точки перегибов, для этого надо решить уравнение
y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции, y'' = 6x+2 = 2(3x+1) = 0. 3 x + 1 = 0. Отсюда х = (-1/3).
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов. Если на интервале вторая производная больше 0 , то функция имеет вогнутость на этом интервале, если вторая производная меньше 0, то функция имеет выпуклость. x = -2 -1 -0.33333 0 1 y'' = -10 -4 0 2 8 Вогнутая на промежутках [-1/3, oo), Выпуклая на промежутках (-oo, -1/3].
ответ: 1) думаю так
х-первое число
(х-2) - второе число
одз: x > 0
уравнение:
х·(х-2)=15
х²-2х-15 = 0
d=4-4·1·(-15)=4+60=64=8²
x₁ = - 3 < 0 не удовлетворяет одз
x₂ = 5 удовлетворяет одз
5 -первое число
5-2=3 - второе число
ответ: 5; 3
2) так
х м- одна сторона
(х-10) м - вторая сторона
6а = 600м²
одз: x > 0
уравнение:
х·(х-10)=600
х²-10х-600 = 0
d=100-4·1·(-600)=100+2400=2500=50²
x₁ = - 20 < 0 не удовлетворяет одз
x₂ = 30 удовлетворяет одз
30 м - одна сторона
30-10 = 20 м - вторая сторона
2·(30+20) = 100 м - периметр участка, которому должна равняться длина изгороди для дан�ого участка.
90м < 100м
ответ: 90м изгороди не хватит для данного участка.
3)так
количество линий связи равно с, числу сочетаний из n по 2:
n₁ = -7 < 0 отрицательное не удовлетворяет условию
n₂ = 8 удовлетворяет условию
ответ: 8.
4)
пусть x% - процент снижения в первый раз, тогда
х/2%=0,5х% - процент снижения во второй раз;
40: 100% · х% = 0,4х руб. - первая скидка
(40-0,4х) руб. - цена после первого снижения
(40-0,4х) : 100% · 0,5х% = (0,4-0,004х) · 0,5х = (0,2х-0,002х²) - вторая скидка
(40-0,4х) - (0,2х-0,002х²) = (40-0,6х-0,002х²) - цена после второго снижения
по условию цена товара после второго снижения равна 34р20к,
получаем уравнение:
40-0,6х-0,002х² = 34,2 (одз: 0%
0,002x²+0,6x-5,8=0
d=0,6²-4*0,002*5,8=0,3136=0,56²
x₁=10% удовлетворяет одз: 0%< 10%< 100%)
x₂=290% не удовлетворяет одз: 290%> 100%)
ответ: на 10%.
подробнее - на -
объяснение:
1) Точки пересечения с осями.
- с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16).
- с осью Ох: у = 0.
x^3+x^2-16x-16 = 0.
Преобразуем заданное уравнение:
у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1).
у = 0, (х-4)(х+4)(х+1) = 0.
Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.
2) Для того, чтобы найти экстремумы, нужно найти производную и приравнять её нулю и корни этого уравнения будут экстремумами данной функции:
y' = 3x² + 2 x - 16 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=2^2-4*3*(-16)=4-4*3*(-16)=4-12*(-16)=4-(-12*16)=4-(-192)=4+192=196;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√196-2)/(2*3)=(14-2)/(2*3)=12/(2*3)=12/6=2;
x₂=(-√196-2)/(2*3)=(-14-2)/(2*3)=-16/(2*3)=-16/6=-(8/3) ≈ -2,6667.
Значит, экстремумы в точках:
((-8/3); (400/27)),
(2, -36).
3) Определяем минимумы и максимумы функции и промежутки знакопостоянства.
Для этого находим значения производной вблизи критических точек.
х = -3 -2.667 -2 1 2 3
у' = 5 0 -8 -11 0 17.
Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).
Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,
а убывает на промежутке (-8/3) < x < 2.
4) Найдем точки перегибов, для этого надо решить уравнение
y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции,y'' = 6x+2 = 2(3x+1) = 0.
3 x + 1 = 0.
Отсюда х = (-1/3).
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов.
Если на интервале вторая производная больше 0 , то функция имеет вогнутость на этом интервале, если вторая производная меньше 0, то функция имеет выпуклость.
x = -2 -1 -0.33333 0 1
y'' = -10 -4 0 2 8
Вогнутая на промежутках [-1/3, oo),
Выпуклая на промежутках (-oo, -1/3].