1) Непонятно, 2*корень из 3 в входит в степень числа 7 или нет 2) При каких целых значениях а квадратное уравнение ax^2+24x+11=0 D=576-44a>0 44a<576 a<144/11 - при таких а корни есть вообще делаем уравнение приведенным x^2+24/ax+11/a=0 Чтобы сумма рациональных корней была целой, нужно чтобы -24/а - было целым, по теореме Виета возможные варианты: а=+-24;+-4;+6;+-8;+-12 вариант +-1 отпадает, т.к. тогда дискриминант не будет полным квадратом D=576-44a подбираем а, когда D - полный квадрат +-24 - нет, -4 - нет, +-6 - нет, +-8 -нет, +-12 -нет остается а=4 при а=4 это квадратное уравнение имеет рациональные корни, сумма которых целое число 3) возможно опечатка: либо 3^32 либо 2^30
Описание функции по ее графику.
Объяснение:
a)
D(f)=[-6;3]
b)
E(f)=[-3;7]
c)
f(x)>0,
если х€[-6;-5)обьед.(-1; 3]
f(x)<0,
если х€(-5; -1)
d)
Максимального значения функция
достигает в точке х=-6.
fmax(-6)=7
В точке х=1 функция достигает ло
кального максимума f(1)=4, но полу
ченное значение не будет max во
всей обрасти определения. Макси
мального значения функция дости
гает в точке х=-6, которая лежит на
границе области определения.
е) Функция не является ни четной
ни нечетной ( функция общего вида).
Если функция четная, то график
симмметричен относительно ОУ.
Если функция нечетная, то график
симметричен относительно точки
начала отсчета (0; 0).
На чертеже график не имеет сим
метрии ==> имеем функцию обще
го вида.
2) При каких целых значениях а квадратное уравнение
ax^2+24x+11=0
D=576-44a>0
44a<576
a<144/11 - при таких а корни есть вообще
делаем уравнение приведенным
x^2+24/ax+11/a=0
Чтобы сумма рациональных корней была целой, нужно чтобы -24/а - было целым, по теореме Виета
возможные варианты:
а=+-24;+-4;+6;+-8;+-12
вариант +-1 отпадает, т.к. тогда дискриминант не будет полным квадратом
D=576-44a
подбираем а, когда D - полный квадрат
+-24 - нет, -4 - нет, +-6 - нет, +-8 -нет, +-12 -нет
остается а=4
при а=4 это квадратное уравнение имеет рациональные корни, сумма которых целое число
3) возможно опечатка: либо 3^32 либо 2^30