Будем решать через обычный дискриминант, после чего я покажу тебе ещё одна формулу, которая называется "дискриминант-1". Итак, начнём: 1) Чтобы разложить трёхчлен на множители, приравняем его к нулю: x²+6x+8=0 2) Вспомним формулу дискриминанта. Для этого сначала обозначим коэффициенты при членах выражения буквами a, b и c соответственно. D=b²-4ac Подставим известные нам коэффициенты: D=36-32=4 3) Ура! Получился удобный дискриминант. Почему удобный? Потому что потом придётся извлекать из него корень, что мы сейчас и сделаем. Найдём сначала одно значение х: x=(-b+√D)/2a x=(-6+2)/2=-4/2=-2 Теперь второе: x=(-b-√D)/2a (вычисли сам, ответ найдёшь ниже) 4) Мы получили два числа - -2 и -4. Что с ними теперь делать? Это нужно запомнить - вот эти самые два числа нужно подставить в выражение (х-.)(х-,)=0. Получаем (х+2)(х+4). Это и есть нужное выражение (проверь, если сомневаешься) А теперь к дискриминанту-1. Эти формулы хорошо тогда, когда коэффициент b чётный. Дискриминант в этом случае вычисляется так: D=k²-ac (k=b/2) Проще, не так ли? Смотрим, как вычислять корни: x₁=(-k+√D)/a x₂=(-k-√D)/a Попробуй решить эту задачу через дискриминант-1 и сравни ответ.
1) 17ⁿ - 1 = (17 - 1)(17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) = 16( 17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) Т.к. один из множителей делится на 16, то и все выражение делится на 16.
2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1). Т.к. один из множителей делится на 24, то и все выражение делится на 24.
3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1). Т.к. один из множителей делится на 14, то и все выражение делится на 14.
1) Чтобы разложить трёхчлен на множители, приравняем его к нулю:
x²+6x+8=0
2) Вспомним формулу дискриминанта. Для этого сначала обозначим коэффициенты при членах выражения буквами a, b и c соответственно. D=b²-4ac
Подставим известные нам коэффициенты:
D=36-32=4
3) Ура! Получился удобный дискриминант. Почему удобный? Потому что потом придётся извлекать из него корень, что мы сейчас и сделаем. Найдём сначала одно значение х:
x=(-b+√D)/2a
x=(-6+2)/2=-4/2=-2
Теперь второе:
x=(-b-√D)/2a (вычисли сам, ответ найдёшь ниже)
4) Мы получили два числа - -2 и -4. Что с ними теперь делать? Это нужно запомнить - вот эти самые два числа нужно подставить в выражение (х-.)(х-,)=0. Получаем (х+2)(х+4). Это и есть нужное выражение (проверь, если сомневаешься)
А теперь к дискриминанту-1. Эти формулы хорошо тогда, когда коэффициент b чётный.
Дискриминант в этом случае вычисляется так: D=k²-ac (k=b/2)
Проще, не так ли? Смотрим, как вычислять корни:
x₁=(-k+√D)/a
x₂=(-k-√D)/a
Попробуй решить эту задачу через дискриминант-1 и сравни ответ.
Т.к. один из множителей делится на 16, то и все выражение делится на 16.
2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1).
Т.к. один из множителей делится на 24, то и все выражение делится на 24.
3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1).
Т.к. один из множителей делится на 14, то и все выражение делится на 14.