A(n)=n²-12n+17 - квадратичная функция, графиком является квадратная парабола, ветви которой направлены вверх, значит наименьшее значение функция, а также последовательность, имеет в вершине. Координаты вершины можно найти по формуле: n0=-b/(2a)=12/2=6. Теперь находим наименьшее значение функции (последовательности), подставляя значение n0 в формулу последовательности: a(n0)=6²-12*6+17=36-72+17=-36+17=-19. ответ: -19.
Координаты вершины можно найти по формуле:
n0=-b/(2a)=12/2=6.
Теперь находим наименьшее значение функции (последовательности), подставляя значение n0 в формулу последовательности:
a(n0)=6²-12*6+17=36-72+17=-36+17=-19.
ответ: -19.