Объяснение:
1) Общий член арифметической прогрессии an = a1 + d (n - 1).
a1 = - 14;
a2 = -11 = - 14 + d;
d = 3;
a23 = - 14 + 3 * 22 = 52.
Найдём сумму первых 23 членов этой арифметической прогрессии:
S23 = 23 (a1 + a23) / 2 = 23 * 19 = 437.
2) Найдём одиннадцатый член этой арифметической прогрессии:
a1 = 17,2;
a11 = 17,2 - 0,2 * 10 = 15,2;
Сумма одиннадцати членов равна:
S11 = 11 * (17,2 + 15,2)/2 = 178,2.
3) Найдём двадцать второй член этой арифметической прогрессии:
a1 = 6;
a10 = 12,3 = 6 +9 d;
d = 0,7;
a20 = 6 + 0,7 * 19 = 19,3.
Найдём сумму 22 членов этой арифметической прогрессии:
S22 = 22 * (6 + 19,3)/2 = 278,3.
8 журналов.
5 в переплёте, и (8-5) = 3 простых (без переплёта).
p = m/n.
Взяты 4 журнала, то есть всего вариантов:
n = количеству сочетаний из 8 по 4 = C₈⁴,
среди взятых четырёх окажется не менее трёх в переплёте, это значит либо 3 в переплёте, либо 4 в переплёте. То есть
m = m₃ + m₄,
m₃ - это количество вариантов, при которых из 4 взятых журналов 3 в переплёте и один не в переплёте,
m₄ - это количество вариантов, при которых из 4 взятых журналов все 4 в переплёте.
m = m₃+m₄ = 2·5·3 + 5 = 30+5 = 35 = 7·5,
p = m/n = (7·5)/(5·2·7) = 1/2 = 0,5.
ответ. 0,5.
Замечание.
Количество сочетаний из n по m =
n! - это факториал,
n! = 1·2·...·n
Объяснение:
1) Общий член арифметической прогрессии an = a1 + d (n - 1).
a1 = - 14;
a2 = -11 = - 14 + d;
d = 3;
a23 = - 14 + 3 * 22 = 52.
Найдём сумму первых 23 членов этой арифметической прогрессии:
S23 = 23 (a1 + a23) / 2 = 23 * 19 = 437.
2) Найдём одиннадцатый член этой арифметической прогрессии:
a1 = 17,2;
a11 = 17,2 - 0,2 * 10 = 15,2;
Сумма одиннадцати членов равна:
S11 = 11 * (17,2 + 15,2)/2 = 178,2.
3) Найдём двадцать второй член этой арифметической прогрессии:
a1 = 6;
a10 = 12,3 = 6 +9 d;
d = 0,7;
a20 = 6 + 0,7 * 19 = 19,3.
Найдём сумму 22 членов этой арифметической прогрессии:
S22 = 22 * (6 + 19,3)/2 = 278,3.
8 журналов.
5 в переплёте, и (8-5) = 3 простых (без переплёта).
p = m/n.
Взяты 4 журнала, то есть всего вариантов:
n = количеству сочетаний из 8 по 4 = C₈⁴,
среди взятых четырёх окажется не менее трёх в переплёте, это значит либо 3 в переплёте, либо 4 в переплёте. То есть
m = m₃ + m₄,
m₃ - это количество вариантов, при которых из 4 взятых журналов 3 в переплёте и один не в переплёте,
m₄ - это количество вариантов, при которых из 4 взятых журналов все 4 в переплёте.
m = m₃+m₄ = 2·5·3 + 5 = 30+5 = 35 = 7·5,
p = m/n = (7·5)/(5·2·7) = 1/2 = 0,5.
ответ. 0,5.
Замечание.
Количество сочетаний из n по m =
n! - это факториал,
n! = 1·2·...·n