2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
y=x²-4x+3
y=ax²+bx+c
a=1, b=-4, c=3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)=4/2=2
у(в) = 2²-4*2+3=4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Объяснение:
метод интервалов: (x-4)(x-6) = 0
х = 4 х = 6 (нули функции)
+ +
/___/___/___/___/__46_/___/___/___/___/_
-
ответ: ( - оо ; 4 ) ∨ ( 6 ; + оо)
x² - 10x ≤ -9x + 1 - x²
x² - 10x + 9x - 1 + x² ≤ 0
2x² - х - 1 ≤ 0
D = 1 - 4*2*(-1) = 9 √D=3
х2 = 1 + 3 = 1
4
х2 = 1 - 3 = - 0,5
4
+ +
- 0,51
-
ответ: [ - 0,5 ; 1 ]