За три года прибыль составит:
3•( рх–(0,5х²+2х+6)).Так как за это время должно окупиться строительство нового цеха, то эта прибыль должна быть не менее 78млн. руб.
Составим неравенство:
3•( рх–(0,5х²+2х+6)) ≥ 78.
Запишем неравенство для р.
После преобразований получим: р≥(0,5х)+2+(32/х) .
Наименьшее значение р=0,5х+2+(32/х) .
Найдем при каком х оно достигается.
Применяем производную.
р`(x)=(0,5х+4+(32/x) )'=0,5–(32/x²).
р`=0.
Найдем критическую точку: 0,5– (32/x²) =0.
х=8 или х=–8(отрицательное значение не удовл. условию, х – натуральное число).
Вычислим наименьшее значение р при х=8
р(8) = 0,5∙8+2+(32/8) = 10.
О т в е т. р=10.
НАЙДИТЕ ОБЛАСТЬ ОПРЕДЕЛЕНИЯ ВЫРАЖЕНИЯ :
√( -2x² + 5x + 2 )
"решение " : -2x² + 5x + 2 ≥0 ⇔ 2x² - 5x - 2 ≤ 0
* * * ax²+bx+c =a(x - x₁ )(x - x₂ ) * * *
2x² - 5x - 2 =0 D = 5² -4*2*(-2) =25 +16 =41 >0
x₁,₂ = (5±√41) /(2*2)
x₁ = (5 - √41) / 4
x₂ =5 + √41) / 4
2x² - 5x - 2 = 2( x - x₁ )(x - x ₂) = 2( x - (5 - √41) / 4 )( x - (5 +√41) / 4 )
- - -
2( x -(5 -√41) / 4 )( x - (5 +√41) / 4 ) ≤ 0⇔( x - (5 - 41) / 4 )( x - (5 +√41) / 4 ) ≤0
⇒ (5 - 41) / 4 ≤ x ≤ (5 + 41) / 4
ответ : x ∈ [ (5 - 41) / 4 ; (5 + 41) / 4 ]
За три года прибыль составит:
3•( рх–(0,5х²+2х+6)).Так как за это время должно окупиться строительство нового цеха, то эта прибыль должна быть не менее 78млн. руб.
Составим неравенство:
3•( рх–(0,5х²+2х+6)) ≥ 78.
Запишем неравенство для р.
После преобразований получим: р≥(0,5х)+2+(32/х) .
Наименьшее значение р=0,5х+2+(32/х) .
Найдем при каком х оно достигается.
Применяем производную.
р`(x)=(0,5х+4+(32/x) )'=0,5–(32/x²).
р`=0.
Найдем критическую точку: 0,5– (32/x²) =0.
х=8 или х=–8(отрицательное значение не удовл. условию, х – натуральное число).
Вычислим наименьшее значение р при х=8
р(8) = 0,5∙8+2+(32/8) = 10.
О т в е т. р=10.
НАЙДИТЕ ОБЛАСТЬ ОПРЕДЕЛЕНИЯ ВЫРАЖЕНИЯ :
√( -2x² + 5x + 2 )
"решение " : -2x² + 5x + 2 ≥0 ⇔ 2x² - 5x - 2 ≤ 0
* * * ax²+bx+c =a(x - x₁ )(x - x₂ ) * * *
2x² - 5x - 2 =0 D = 5² -4*2*(-2) =25 +16 =41 >0
x₁,₂ = (5±√41) /(2*2)
x₁ = (5 - √41) / 4
x₂ =5 + √41) / 4
2x² - 5x - 2 = 2( x - x₁ )(x - x ₂) = 2( x - (5 - √41) / 4 )( x - (5 +√41) / 4 )
- - -
2( x -(5 -√41) / 4 )( x - (5 +√41) / 4 ) ≤ 0⇔( x - (5 - 41) / 4 )( x - (5 +√41) / 4 ) ≤0
⇒ (5 - 41) / 4 ≤ x ≤ (5 + 41) / 4
ответ : x ∈ [ (5 - 41) / 4 ; (5 + 41) / 4 ]