y<=x^2-6x- будет внешняя часть параболы, включая саму параболу. Если вы затрудняетесь с ее определением-совет: берите точку C (7;0) и подставляйте в неравенство
0<=49-42-верно. значит внешняя часть параболы, куда входит C (7;0)-решение. Сама парабола тоже решение- так как неравенство нестрогое. Область решения неравенства выделили штриховкой . как показано на чертеже.
По поводу точек А и В -поставлю их в плоскости рисунка.
А входит во внутреннюю область параболы-значит не является решением, В-во внешнюю, область штриховки, значит решение неравенства.
чтобы наибольшее значение данной функции было не меньше 1, необходимо и достаточно, чтобы она в какой-то точке приняла значение 1.
если наибольшее значение функции не меньше единицы, то по непрерывности в какой-то точке будет значение единица. если же наибольшее значение меньше единицы, то значение единица приниматься не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1
так как x² + 1 > 0 , то уравнение равносильно совокупности :
судя по заданию-график построен y=x^2-6x
решением неравенства
y<=x^2-6x- будет внешняя часть параболы, включая саму параболу. Если вы затрудняетесь с ее определением-совет: берите точку C (7;0) и подставляйте в неравенство
0<=49-42-верно. значит внешняя часть параболы, куда входит C (7;0)-решение. Сама парабола тоже решение- так как неравенство нестрогое. Область решения неравенства выделили штриховкой . как показано на чертеже.
По поводу точек А и В -поставлю их в плоскости рисунка.
А входит во внутреннюю область параболы-значит не является решением, В-во внешнюю, область штриховки, значит решение неравенства.
чтобы наибольшее значение данной функции было не меньше 1, необходимо и достаточно, чтобы она в какой-то точке приняла значение 1.
если наибольшее значение функции не меньше единицы, то по непрерывности в какой-то точке будет значение единица. если же наибольшее значение меньше единицы, то значение единица приниматься не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1
так как x² + 1 > 0 , то уравнение равносильно совокупности :
эта совокупность имеет решение, если: