1. рассмотрим производную у'=3x^2+36x. 2. Если в какой-либо точки производная =0, то сама функция в этой точке будет иметь максимум или минимум. Наша производная может быть 0 в двух точках:х=0 и х= - 12. 3.Если построить график производной, то это будет парабола, с нулями в точках -12 и 0, ветви которой будут направленны вверх, т.к. перед х^2 стоит 3- положительное число. => Наша функция будет убывать на промежутке, где производная отрицательна (-12, 0), и возрастать там где она положительна(-беск;-12) и (0;+ беск). Т.е. свой минимум она будет иметь как раз в точке х=0. ( потому что до этого она убывала, а потом стала возрастать). Точка х= -12- нам не нужна, т.к. она не входит в заданный промежуток (-3;3). А вот х=0- нам как раз пригодится. Т.к. она как раз лежит в промежутке от -3 до 3. Следовательно нам нужно найти значение функции у в точке х=0. Подставляем ноль вместо х в выражение у=х^3+18x^2+17 и находим у: у=0^3+18*0^2+17= 0+0+17=17 ответ: 17
областью определения y(x) будет x€R
(5+|x|>0 при любых x)
Теперь найдем множество значений, исходя из свойств модуля и квадратного корня
как мы видим нулей функции у(х) нет
теперь раскроем внутренний модуль,
а затем внешний
внешний модуль раскрывается основываясь на сравнении значения квадратного корня и 2 при значениях х из заданных интервалов.
из вида функции и свойств квадратного корня мы видим , что
при х>0 функция возрастает
при х<0 функция убывает
причём минимум функции будет при х=0
Функции , составляющие y(x)
строятся на основе функции
соответствующими сдвигами вдоль осей ординат и абсцисс
Финальный график - см на фото
удачи!
2. Если в какой-либо точки производная =0, то сама функция в этой точке будет иметь максимум или минимум. Наша производная может быть 0 в двух точках:х=0 и х= - 12.
3.Если построить график производной, то это будет парабола, с нулями в точках -12 и 0, ветви которой будут направленны вверх, т.к. перед х^2 стоит 3- положительное число. => Наша функция будет убывать на промежутке, где производная отрицательна (-12, 0), и возрастать там где она положительна(-беск;-12) и (0;+ беск).
Т.е. свой минимум она будет иметь как раз в точке х=0. ( потому что до этого она убывала, а потом стала возрастать). Точка х= -12- нам не нужна, т.к. она не входит в заданный промежуток (-3;3). А вот х=0- нам как раз пригодится. Т.к. она как раз лежит в промежутке от -3 до 3. Следовательно нам нужно найти значение функции у в точке х=0. Подставляем ноль вместо х в выражение у=х^3+18x^2+17 и находим у:
у=0^3+18*0^2+17= 0+0+17=17
ответ: 17