найдем координаты векторов АВ и АС, выходящих из вершины А, от координат конца вычтем координаты начала.
→АВ(4-3; 6-5); →АВ(1; 1); →АС(5-3; 5-5); →АВ(2; 0);
найдем длины этих векторов. длина →АВ равна √(1²+1²)=√2; длина →АС равна √(2²+0²)=2;
Найдем скалярное произведение этих же векторов. это сумма произведений соответствующих координат.
→АВ*→АВ=1*2+1*0=2
Разделим скалярное произведение векторов на произведение их модулей, найдя косинус угла между векторами.
2/(2√2)=√2/2, значит. внутренний угол при вершине А равен 45°
ответ 45°
6x - 9y = 88,5
5x + 3y = 47,5 | *3
6x - 9y = 88,5
15x + 9y = 142,5
Складываем два уравнения:
21x = 231
y = (6x - 88,5)/9
x = 11
y = (66 - 88,5)/9 = -22,5/9 = -2.5
ответ: (11; -2.5)
2)
11x + 10y = 73,5
6x - 5y = -54 | *2
11x + 10y = 73,5
12x - 10y = -108
Складываем два уравнения:
23x = -34,5
y = (6x + 54)/5
x = -1,5
y = (6*(-1,5) + 54)/5 = 45/5 = 9
ответ: (-1,5; 9)
3)
2x + 13y = -69 | *7
14x + 11y = -3
14x + 91y = -483
14x + 11y = -3
Вычтем из первого уравнения второе:
80y = -480
x = (-69 - 13y)/2
y = -6
x = (-69 - 13*(-6))/2 = (-69 + 78)/2 = 9/2 = 4.5
ответ: (4,5: -6)
найдем координаты векторов АВ и АС, выходящих из вершины А, от координат конца вычтем координаты начала.
→АВ(4-3; 6-5); →АВ(1; 1); →АС(5-3; 5-5); →АВ(2; 0);
найдем длины этих векторов. длина →АВ равна √(1²+1²)=√2; длина →АС равна √(2²+0²)=2;
Найдем скалярное произведение этих же векторов. это сумма произведений соответствующих координат.
→АВ*→АВ=1*2+1*0=2
Разделим скалярное произведение векторов на произведение их модулей, найдя косинус угла между векторами.
2/(2√2)=√2/2, значит. внутренний угол при вершине А равен 45°
ответ 45°