Тут можно составить три уравнения, и решать их вместе (по сути дела, решаем систему из трёх уравнений).
Обозначим вместимость сосудов (первого, второго и третьего) буквами a, b, c. Это три неизвестных в наших уравнениях.
Далее, все три сосуда вместе- это 80литров. Получается такое уравнение: a + b + c = 80
Составим второе уравнение, на основе того, что вместимость первого сосуда равна второму плюс три пятых от третьего: a = b + 3/5 * c
Третье уравнение составим, используя то, что вместимость первого сосуда равна третьему плюс половина второго: a = 1/2 * b + c
Правые части второго и третьего уравнения равны переменной а, значит и равны друг другу. Приравняем их, и выразим b: b + 3/5 * c = 1/2 * b + c b - 1/2 * b = c - 3/5 * c 1/2 * b = 2/5 * c b = 4/5 * c (домножили на два)
Подставим в первое уравнение вместо a выражение из третьего уравнения: (1/2 * b + c) + b + c = 80 3/2 * b + 2c = 80
Теперь, подставим сюда вместо b выражение, найденное из второго и третьего уравнения: 3/2 * (4/5 * c) + 2c = 80 12/10 * c + 2c = 80 12c + 20c = 800 (домножили на 10) 32с = 800 с = 800 / 32 = 25 (литров)
Теперь находим b: b = 4/5 * c = 4/5 * 25 = 20 (литров)
Наконец, находим a: a = 1/2 * b + c = 1/2 * 20 + 25 = 10 + 25 = 35 (литров)
ответ: первый сосуд- 35 литров, второй сосуд- 20 литров, третий сосуд- 25 литров.
Пусть х - длина, га которую увеличили длину и ширину прямоугольника. х > 0, поскольку стороны прямоугольника увеличили. Тогда 2+х - новая ширина. 4+х - новая длина. 2•4 - площадь исходного прямоугольника. (2+х)(4+х) - площадь нового увеличенного прямоугольника. 1) Уравнение: (2+х)(4+х) = 3(2•4) 8 + 4х + 2х + х^2 = 24 х^2 + 6х + 8 - 24 = 0 х^2 + 6х - 16 = 0 Дискриминант = корень из ( 6^2 + 4•16) = = корень из (36+64) = корень из 100 = 10 х1 = (-6+10)/2=4/2=2 х2 = (-6-10/2 = -16/2=-8 - не подходить, поскольку х>0. 2) 2+2=4 м - ширина нового прямоугольника. 3) 4+2=6 м - длина нового прямоугольника.
ответ: 4 м; 6 м.
Проверка: 1) 2•4=8 кв.м - площадь исходного прямоугольника. 2) 4•6=24 кв.м - площадь нового прямоугольника. 3) 24:8=3 раза- во столько раз увеличилась площадь прямоугольника.
Обозначим вместимость сосудов (первого, второго и третьего) буквами a, b, c. Это три неизвестных в наших уравнениях.
Далее, все три сосуда вместе- это 80литров. Получается такое уравнение:
a + b + c = 80
Составим второе уравнение, на основе того, что вместимость первого сосуда равна второму плюс три пятых от третьего:
a = b + 3/5 * c
Третье уравнение составим, используя то, что вместимость первого сосуда равна третьему плюс половина второго:
a = 1/2 * b + c
Правые части второго и третьего уравнения равны переменной а, значит и равны друг другу. Приравняем их, и выразим b:
b + 3/5 * c = 1/2 * b + c
b - 1/2 * b = c - 3/5 * c
1/2 * b = 2/5 * c
b = 4/5 * c (домножили на два)
Подставим в первое уравнение вместо a выражение из третьего уравнения:
(1/2 * b + c) + b + c = 80
3/2 * b + 2c = 80
Теперь, подставим сюда вместо b выражение, найденное из второго и третьего уравнения:
3/2 * (4/5 * c) + 2c = 80
12/10 * c + 2c = 80
12c + 20c = 800 (домножили на 10)
32с = 800
с = 800 / 32 = 25 (литров)
Теперь находим b:
b = 4/5 * c = 4/5 * 25 = 20 (литров)
Наконец, находим a:
a = 1/2 * b + c = 1/2 * 20 + 25 = 10 + 25 = 35 (литров)
ответ: первый сосуд- 35 литров, второй сосуд- 20 литров, третий сосуд- 25 литров.
х > 0, поскольку стороны прямоугольника увеличили.
Тогда 2+х - новая ширина.
4+х - новая длина.
2•4 - площадь исходного прямоугольника.
(2+х)(4+х) - площадь нового увеличенного прямоугольника.
1) Уравнение:
(2+х)(4+х) = 3(2•4)
8 + 4х + 2х + х^2 = 24
х^2 + 6х + 8 - 24 = 0
х^2 + 6х - 16 = 0
Дискриминант = корень из ( 6^2 + 4•16) =
= корень из (36+64) = корень из 100 = 10
х1 = (-6+10)/2=4/2=2
х2 = (-6-10/2 = -16/2=-8 - не подходить, поскольку х>0.
2) 2+2=4 м - ширина нового прямоугольника.
3) 4+2=6 м - длина нового прямоугольника.
ответ: 4 м; 6 м.
Проверка:
1) 2•4=8 кв.м - площадь исходного прямоугольника.
2) 4•6=24 кв.м - площадь нового прямоугольника.
3) 24:8=3 раза- во столько раз увеличилась площадь прямоугольника.