В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
диана27th
диана27th
08.04.2023 20:38 •  Алгебра

Знайти похідну функції сро y = x \times ln x


y = \sqrt{3 \times } 4x

Показать ответ
Ответ:
дара23
дара23
09.07.2022 09:33

Завдання 1:

Координати точки, яка належить графіку функції (або через яку проходить графік), будуть задовільняти формулу, якою ця функція задана.

Підставимо координати точки В (-2; у) у формулу: абсцису замість х, ординату замість у.

у = -3 ∙ (-2).

Тепер можемо обчислити ординату:

у = 6.

Відповідь: 6.

Завдання 2:

Підставимо координати точки N (-4; 9) у формулу: : абсцису замість х, ординату замість у.

9 = a(-4+2)^2-3

9 = a\cdot (-2)^2-3

9 = 4a-3

9 + 3 = 4a

12 = 4a  

a = 12 : 4

a = 3.

Відповідь: 3.

Завдання 3:

Щоб вирішити рівняння \frac{4}{2-x} = x^2 + 3 графічно, треба побудувати графіки двох функцій:

y = \frac{4}{2-x} та y = x^2 + 3.

Коренями рівняння будуть абсциси точок перетину цих графіків.

Побудуємо графіки, створивши таблицю точок, що належать їм (див. малюнок).

Точка перетину графіків А (1;4).

х = 1.

Відповідь: 1.  


2. Точка A(-2; 4) належить графіку функції y = f(x). Знайдіть ординату точки функції у = -3f(x). В(-
0,0(0 оценок)
Ответ:
puh9999
puh9999
11.09.2020 01:04

Объяснение:

Первая система линейных уравнений:

\left \{ \begin {array}{cccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 2*x1-x2+3*x3-4*x4+x5-x6=0 \\ 3*x1+x2-x3+2*x4+x5+3*x6=0 \\ 4*x1-7*x2+8*x3-15*x4+6*x5-5*x6=0 \end{array}\right

1-ое уравнение умножаем на -2 и складываем со 2-ым уравнением.

1-ое уравнение умножаем на -3 и складываем с 3-им уравнением.

1-ое уравнение умножаем на -4 и складываем с 4-ым уравнением.

Получаем нули при x1 во всех уравнениях, кроме 1-го:

\left \{ \begin {array}{cccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 0*x1-5*x2+5*x3-10*x4+3*x5-5*x6=0 \\ 0*x1-5*x2+2*x3-7*x4+4*x5-3*x6=0 \\ 0*x1-15*x2+12*x3-27*x4+10*x5-13*x6=0 \end{array}\right

2-ое уравнение умножаем на -1 и складываем с 3-им уравнением.

2-ое уравнение умножаем на -3 и складываем с 4-ым уравнением.

Получаем нули при x2 во всех уравнениях, кроме 1-го и 2-го:

\left \{ \begin {array}{cccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 0*x1-5*x2+5*x3-10*x4+3*x5-5*x6=0 \\ 0*x1+0*x2-3*x3+3*x4+x5+2*x6=0 \\ 0*x1+0*x2-3*x3+3*x4+x5+2*x6=0 \end{array}\right

3-ье и 4-ое уравнения получились одинаковыми, 4-ое отбрасываем:

\left \{ \begin {array}{ccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 0*x1-5*x2+5*x3-10*x4+3*x5-5*x6=0 \\ 0*x1+0*x2-3*x3+3*x4+x5+2*x6=0\end{array}\right

Получилась система, из которой можно получить фундаментальное решение:

x4, x5, x6 ∈ R

x3=\frac{3*x4+x5+2*x6}{3}=x4+\frac{x5}{3}+\frac{2*x6}{3}

x2=\frac{5*x3-10*x4+3*x5-5*x6}{5} =x3-2*x4+\frac{3*x5}{5} -x6=\\ =x4+\frac{x5+2*x6}{3} -2*x4+\frac{3*x5}{5} -\frac{3*x6}{3}=-x4+\frac{14*x5}{15}-\frac{x6}{3}

x2=-x4+\frac{14*x5}{15}-\frac{x6}{3}

x1=-2*x2+x3-3*x4+x5-2*x6=\\ =2*x4-\frac{28*x5}{15}+\frac{2*x6}{3} +x4+\frac{5*x5}{15}+\frac{2*x6}{3} -3*x4+\frac{15*x5}{15}-\frac{6*x6}{3} =\\ =0*x4 -\frac{8*x5}{15}-\frac{2*x6}{3}

x1=-\frac{8*x5}{15}-\frac{2*x6}{3}

Вторая система решается точно также.

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 2*x1+x2-x3+2*x4-3*x5=0 \\ 3*x1-2*x2-x3+x4-2*x5=0 \\ 2*x1-5*x2+x3-2*x4+2*x5=0 \end{array}\right.

1-ое уравнение умножаем на -2 и складываем со 2-ым уравнением.

1-ое уравнение умножаем на -3 и складываем с 3-им уравнением.

1-ое уравнение умножаем на -2 и складываем с 4-ым уравнением.

Получаем нули при x1 во всех уравнениях, кроме 1-го:

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1+5*x2-3*x3+4*x4-5*x5=0 \\ 0*x1+4*x2-4x3+4*x4-5*x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \end{array}\right.

4-ое уравнение ставим 2-ым, от этого система не меняется:

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \\ 0*x1+5*x2-3*x3+4*x4-5*x5=0 \\ 0*x1+4*x2-4x3+4*x4-5*x5=0 \end{array}\right.

2-ое уравнение умножаем на 5 и складываем с 3-им уравнением.

2-ое уравнение умножаем на 4 и складываем с 4-ым уравнением.

Получаем нули при x2 во всех уравнениях, кроме 1-го и 2-го:

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \\ 0*x1+0*x2-8*x3+4*x4-5*x5=0 \\ 0*x1+0*x2-8*x3+4*x4-5*x5=0 \end{array}\right.

3-ье и 4-ое уравнения получились одинаковыми, 4-ое отбрасываем:

\left \{ \begin{array}{ccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \\ 0*x1+0*x2-8*x3+4*x4-5*x5=0 \end{array}\right.

Получилась система, из которой можно получить фундаментальное решение:

x4, x5 ∈ R

x3=\frac{4*x4-5*x5}{8}=\frac{x4}{2} -\frac{5*x5}{8}

x2=-x3=-\frac{x4}{2}+\frac{5*x5}{8}

x1=2*x2-x3+x4-x5=-\frac{2x4}{2}+\frac{10*x5}{8} -\frac{x4}{2}+\frac{5*x5}{8} +\frac{2*x4}{2}-\frac{8*x5}{8} =\\ =-\frac{x4}{2}+\frac{7*x5}{8}

x1=-\frac{x4}{2}+\frac{7*x5}{8}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота