1) F(x) = 4x - x^3/3 + C F(-3) = 4(-3) - (-3)^3/3 + C = -12 + 27/3 + C = -3 + C = 10 C = 13 F(x) = 4x - x^3/3 + 13
2) f(x) = F'(x) = (cos 3x - cos pi)' = -3sin 3x
3) F(x) = -3/x - 7/5*sin 5x + C
4) Найдем, где они пересекаются - это пределы интегрирования y = x^2 y = 6 - x x^2 = 6 - x x^2 + x - 6 = 0 (x + 3)(x - 2) = 0 Int(-3; 2) (6 - x - x^2) dx = 6x - x^2/2 - x^3/3 | (-3; 2) = = 6*2 - 2^2/2 - 2^3/3 - (6(-3) - (-3)^2/2 - (-3)^3/3) = = 12 - 2 - 8/3 + 18 + 9/2 - 9 = 10 + 9 - 8/3 + 9/2 = 19 + 11/6 = 20 5/6
5) Найдем, где они пересекаются - это пределы интегрирования 2sin x = sin x sin x = 0 x1 = 0; x2 = pi Int(0; pi) (2sin x - sin x) dx = Int(0; pi) sin x dx = cos x |(0; pi) = = |cos pi - cos 0| = |-1 - 1| = |-2| = 2
У=-5х²+6х 1) график парабола, ветви вниз, значит наибольшее значение достигается в вершине параболы, а наименьшего значения не существует. Найдём вершину данной параболы х(в)=-6 / -10 = 0,6 у(в) = -5*0,36+6*0,6 =-1,8+3,6=1,8 Значит, максимальное значение у(0,6)=1,8 минимальное значение у(-∞)=-∞. 2) у=-2х²+5х+3, у(х)=-4 -2х²+5х+3=-4 -2х²+5х+7=0 Д=25+56=81=9² х(1)=(-5+9)/-4= -1 х(2)=(-5-9)/-4= -3,5 => y(-1)=-4 и y(-3.5)=-4
F(-3) = 4(-3) - (-3)^3/3 + C = -12 + 27/3 + C = -3 + C = 10
C = 13
F(x) = 4x - x^3/3 + 13
2) f(x) = F'(x) = (cos 3x - cos pi)' = -3sin 3x
3) F(x) = -3/x - 7/5*sin 5x + C
4) Найдем, где они пересекаются - это пределы интегрирования
y = x^2
y = 6 - x
x^2 = 6 - x
x^2 + x - 6 = 0
(x + 3)(x - 2) = 0
Int(-3; 2) (6 - x - x^2) dx = 6x - x^2/2 - x^3/3 | (-3; 2) =
= 6*2 - 2^2/2 - 2^3/3 - (6(-3) - (-3)^2/2 - (-3)^3/3) =
= 12 - 2 - 8/3 + 18 + 9/2 - 9 = 10 + 9 - 8/3 + 9/2 = 19 + 11/6 = 20 5/6
5) Найдем, где они пересекаются - это пределы интегрирования
2sin x = sin x
sin x = 0
x1 = 0; x2 = pi
Int(0; pi) (2sin x - sin x) dx = Int(0; pi) sin x dx = cos x |(0; pi) =
= |cos pi - cos 0| = |-1 - 1| = |-2| = 2
1) график парабола, ветви вниз, значит наибольшее значение достигается в вершине параболы, а наименьшего значения не существует.
Найдём вершину данной параболы
х(в)=-6 / -10 = 0,6
у(в) = -5*0,36+6*0,6 =-1,8+3,6=1,8
Значит, максимальное значение у(0,6)=1,8
минимальное значение у(-∞)=-∞.
2) у=-2х²+5х+3, у(х)=-4
-2х²+5х+3=-4
-2х²+5х+7=0
Д=25+56=81=9²
х(1)=(-5+9)/-4= -1
х(2)=(-5-9)/-4= -3,5 => y(-1)=-4 и y(-3.5)=-4
3) x²-5x-3 K(-1; 3)
1+5-3=3, 3=3 => проходит