Пусть скорость второго автомобилиста равна v км/ч, тогда скорость первого равна v+30 км/ч Через 2 часа после начала движения расстояние между первой машиной и пунктом А было 2(v+30), а после того, как он повернул и проехал час в обратном направлении, оно стало равно расстоянию, которое он проезжает за 1 час, т.е его скорости (v+30) км Второй двигался 2+1=3 часа до времени, когда расстояние между машинами стало 290 км Вторая машина, двигаясь без остановки, проехала 3v км, и от пункта В она была на на этом расстоянии (S=vt) Итак, первая машина была от А на расстоянии v+30 км, вторая от пункта В была на расстоянии 3 v, и между ними был промежуток пути длиной 290 км. Составим и решим уравнение. v+30+290 +3v =600 4v= 280 v=70 км/ч - скорость второй машины v+30=100 км/ч (скорость первой машины) Проверка: 100+290+3*70=600 км
Уравнение является приведённым (коэффициент при x³ равен 1), поэтому его корни могут быть среди делителей его свободного члена. Таковыми являются числа +1,-1,+2,-2,+4,-4,+5,-5,+10,-10,+20,-20. Подставляя в уравнение число 1, убеждаемся, что оно удовлетворяет уравнению, то есть является его корнем. Разделив многочлен x³-10*x²+29*x-20 на двучлен x-1, получим равенство x³-10*x²+29*x-20=(x-1)*(x²-9*x+20). Квадратное уравнение x²-9*x+20 имеет дискриминант D=9²-4*1*20=1 и корни x1=(9+1)/2=5, x2=(9-1)/2=4. Значит, x²-9*x+20=(x-5)*(x-4) и x³-10*x³-10*x²+29*x-20=(x-1)*(x-5)*(x-4). Отсюда следует, что корнями уравнения являются числа x1=1,x2=4, x3=5. ответ: 1,4,5.
тогда скорость первого равна v+30 км/ч
Через 2 часа после начала движения расстояние между первой машиной и пунктом А было 2(v+30), а после того, как он повернул и проехал час в обратном направлении, оно стало равно расстоянию, которое он проезжает за 1 час, т.е его скорости (v+30) км
Второй двигался 2+1=3 часа до времени, когда расстояние между машинами
стало 290 км
Вторая машина, двигаясь без остановки, проехала 3v км,
и от пункта В она была на на этом расстоянии (S=vt)
Итак, первая машина была от А на расстоянии v+30 км,
вторая от пункта В была на расстоянии 3 v, и между ними был
промежуток пути длиной 290 км.
Составим и решим уравнение.
v+30+290 +3v =600
4v= 280
v=70 км/ч - скорость второй машины
v+30=100 км/ч (скорость первой машины)
Проверка:
100+290+3*70=600 км