Объём задания примем за 1. Пусть I рабочий выполнить задание за х часов, и по условию, I рабочий выполнить задание на 7 часов быстрее чем II рабочий, то есть II рабочий выполнить задание за (х+7) часов.
Тогда производительность I рабочего за 1 час будет 1/х часть задания, а производительность II рабочего за 1 час будет 1/(х+7) часть задания. По условию оба рабочих работая вместе выполнили задание за 12 часов, то за 1 час они вместе выполнили 1/12 часть задания. Приравниваем данные за 1 час работы:
1/х + 1/(х+7) = 1/12 | ·12·x·(x+7)
12·(x+7) + 12·x = x·(x+7)
12·x+84+12·x=х²+7·x
х²–17·x–84=0
D= (–17)²–4·1·(–84) = 289+336 = 625 = 25²
х₁=(17+25)/2 = 42/2 = 21 часов время работы I рабочего
1)64=4(в кубе);z(6степени)=(z(2степени))(в кубе).сокращаем степени,и тогда получится =4х*z(во второй степени) 2)действия происходят аналогично.а(8 степени)=(а(2 степени))(в 4 степени);b(12степени)=(b(3степени))(в 4 степени). сокращаем степени, и тогда получится =а(в 2 степени)b(3степени) 3)32=2(5 степени);х(10степени)=(х(2 степени))(в 5степени);у(20 степени)=(у(4степени))(в 5 степени);сокращаем степени получаем 2х(2степени)у(4степени) 4)а(12степени)=(а(2степени))(в 6степени);b(18степени)=(b(3степени))(в 6 степени) сокращаем степени и получаем ответ=а(2степени)b(3степени)
I рабочий за 21 часов и II рабочий за 28 часов
Объяснение:
Объём задания примем за 1. Пусть I рабочий выполнить задание за х часов, и по условию, I рабочий выполнить задание на 7 часов быстрее чем II рабочий, то есть II рабочий выполнить задание за (х+7) часов.
Тогда производительность I рабочего за 1 час будет 1/х часть задания, а производительность II рабочего за 1 час будет 1/(х+7) часть задания. По условию оба рабочих работая вместе выполнили задание за 12 часов, то за 1 час они вместе выполнили 1/12 часть задания. Приравниваем данные за 1 час работы:
1/х + 1/(х+7) = 1/12 | ·12·x·(x+7)
12·(x+7) + 12·x = x·(x+7)
12·x+84+12·x=х²+7·x
х²–17·x–84=0
D= (–17)²–4·1·(–84) = 289+336 = 625 = 25²
х₁=(17+25)/2 = 42/2 = 21 часов время работы I рабочего
х₂=(17–25)/2 = –4<0 не подходит.
Тогда время работы II рабочего равна
21 + 7 = 28 часов.
2)действия происходят аналогично.а(8 степени)=(а(2 степени))(в 4 степени);b(12степени)=(b(3степени))(в 4 степени). сокращаем степени, и тогда получится =а(в 2 степени)b(3степени)
3)32=2(5 степени);х(10степени)=(х(2 степени))(в 5степени);у(20 степени)=(у(4степени))(в 5 степени);сокращаем степени получаем 2х(2степени)у(4степени)
4)а(12степени)=(а(2степени))(в 6степени);b(18степени)=(b(3степени))(в 6 степени) сокращаем степени и получаем ответ=а(2степени)b(3степени)