В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
angelina459
angelina459
16.04.2022 13:06 •  Алгебра

Знайти суму перших семи членів прогресії (bn), якщо b1=1/2,b3 =1/4

Показать ответ
Ответ:
mmozgovoj
mmozgovoj
31.03.2020 14:22
Левая часть представляет собой сумму неотрицательных слагаемых, эта сумма обращается в ноль тогда и только тогда, когда оба слагаемых суть нули, если хоть одно из них отлично от нуля, то вся сумма (левая часть) отлична от нуля (больше нуля). Таким образом данное уравнение равносильно системе:
{ (x^2-1)^2 = 0;
{ (x^2 - 6x -7)^2 = 0;
что равносильно
{ x^2-1 = 0;
{ x^2 - 6x - 7 = 0;
равносильно
{ x^2=1;
{x^2 - 6x - 7 = 0;
первое уравнение дает x1=1; или x2=-1;
x1 = 1, подставляем во второе уравнение последней системы:
1 - 6 - 7 = 0; <=> -12=0, ложное равенство, поэтому x1=1, не является решением системы.
x2 = -1; подставляем во второе уравнение:
(-1)^2 - 6*(-1) - 7 = 1+6-7=0, верное равенство, таким образом
x=-1 единственное решение системы.
ответ. x=(-1).
0,0(0 оценок)
Ответ:
sweta2012
sweta2012
04.05.2023 04:16
Рассмотрим функцию
    f(x,y,z)=x^2+y^2-xz-yz
Наша функция задана в неявном виде, то частные производные функции вычисляются по формулам:
\dfrac{\partial z}{\partial x} = -\dfrac{ \frac{\partial f}{\partial x} }{ \frac{\partial f}{\partial z} } =- \dfrac{2x-z}{-x-y}

\dfrac{\partial z}{\partial y} = -\dfrac{ \frac{\partial f}{\partial y} }{ \frac{\partial f}{\partial z} } =- \dfrac{2y-z}{-x-y}
Вычислим значение частных производных в точке M_0 с координатами (x_0;y_0;z_0).
f'_x(x_0;y_0;z_0)= \dfrac{2x_0-z_0}{x_0+y_0} \\ \\ f'_y(x_0;y_0;z_0)= \dfrac{2y_0-z_0}{x_0+y_0}
Запишем уравнение касательной плоскости к поверхности в точке M_0:
z-z_0=f'_x(x_0;y_0;z_0)(x-x_0)+f'_y(x_0;y_0;z_0)(y-y_0) - уравнение касательной в общем виде.

\boxed{z-z_0= \dfrac{2x_0-z_0}{x_0+y_0} \cdot (x-x_0)+ \dfrac{2y_0-z_0}{x_0+y_0} \cdot(y-y_0)} - уравнение касательной плоскости к поверхности в точке M_0 с координатами (x_0;y_0;z_0).

Уравнение нормали в общем виде:
      \dfrac{x-x_0}{f'_x(x_0;y_0;z_0)} = \dfrac{y-y_0}{f'_y(x_0;y_0;z_0)} = \dfrac{z-z_0}{-1}
Пользуясь этой формулой, имеем каноническое уравнение нормали к поверхности в точке M_0:

\boxed{\dfrac{(x-x_0)(x_0+y_0)}{2x_0-z_0} = \dfrac{(y-y_0)(x_0+y_0)}{2y_0-z_0} = \dfrac{z-z_0}{-1}} - каноническое уравнение нормали к поверхности в точке M_0 с координатами (x_0;y_0;z_0).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота