В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
rudens2007
rudens2007
12.02.2022 01:29 •  Алгебра

Знайти точки екстремуму функції f(x)=x^3-27x​

Показать ответ
Ответ:
Настя456598
Настя456598
14.03.2023 07:30
x^2-2x-12+3x^2-6x-13=0 
Произведем замену переменных. 
Пусть t=x^2-2x 
В результате замены переменных получаем вс уравнение. 
3t-13+t^2-2t+1=0 
Раскрываем скобки. 
3t-13+t^2-2t+1=0 
3t-13+1+t^2-2t=0 
3t-12+t^2-2t=0 
Приводим подобные члены. 
1t-12+t^2=0 
t-12+t^2=0 
Изменяем порядок действий. 
t^2+t-12=0 
Находим дискриминант. 
D=b^2-4ac=12-4•1-12=49 
Дискриминант положителен, значит уравнение имеет два корня. 
Воспользуемся формулой корней квадратного уравнения. 
t1,2=-b±D/2a 
t1=-1-72•1=-4 ;t2=-1+72•1=3 
ответ вс уравнения: t=-4;t=3 . 
В этом случае исходное уравнение сводится к уравнению 
x^2-2x=-4 ;x^2-2x=3 
Теперь решение исходного уравнения разбивается на отдельные случаи. 
Случай 1 . 
x^2-2x=-4 
Перенесем все в левую часть. 
x^2-2x+4=0 
Находим дискриминант. 
D=b^2-4ac=-22-4•1•4=-12 
Дискриминант отрицателен, значит уравнение не имеет корней. 
Итак,ответ этого случая: нет решений. 
Случай 2 . 
x^2-2x=3 
Перенесем все в левую часть. 
x^2-2x-3=0 
Находим дискриминант. 
D=b^2-4ac=-22-4•1-3=16 
Дискриминант положителен, значит уравнение имеет два корня. 
Воспользуемся формулой корней квадратного уравнения. 
x1,2=-b±D/2a 
x1=2-42•1=-1 ;x2=2+42•1=3 
Итак,ответ этого случая: x=-1;x=3 . 
Окончательный ответ: x=-1;x=3 . 
0,0(0 оценок)
Ответ:
olgamorozkina19
olgamorozkina19
30.09.2022 19:38

1. Область определения функции: множество всех действительных чисел.

2. Не периодическая функция.

3. Проверим на четность или нечетность функции:

y(-x)=(-x)^3-12\cdot(-x)=-x^3+12x=-(x^3-12x)=-y(x)

Итак, функция является нечетной.

4. Точки пересечения с осью Ох и Оу:

4.1. С осью Ох (у=0):

x^3-12x=0\\ x(x^2-12)=0\\ x_1=0;~~ x_{2,3}=\pm\sqrt{12}

4.2. С осью Оу (x=0):

x=0;~ y=0^3-12\cdot 0=0


5. Критические точки, экстремумы, возрастание и убывание функции.

y'=(x^3-12x)'=(x^3)'-(12x)'=3x^2-12\\ y'=0;~~~ x^2-4=0\\ x=\pm 2


___+____(-2)___-__(2)_____+____

Функция возрастает на промежутке x∈(-∞;-2) и x∈(2;+∞), а убывает - x ∈ (-2;2). Производная функции в точке х=-2 меняет знак с (+) на (-), следовательно точка х=-2 - локальный максимум, а в точке х=2 производная функции меняет знак с (-) на (+), значит точка х=2 - локальный минимум.


6. Точки перегиба.

y''=(3x^2-12)'=6x\\ y''=0\\ x=0

На промежутке x ∈ (-∞;0) функция выпукла вверх, а на промежутке x ∈ (0;+∞) выпукла вниз.


7. Горизонтальной, вертикальной и наклонной асимптот нет.


Y=x^3-12x полное исследование функции) !
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота