Проще всего решить это уравнение графическим arctan(x/5)-arctan(x/7) представляет собой график арктангенса, из которого вычели график арктангенса с меньшим аргументом. Это очень похоже на тот же арктангенс, который идет вдоль оси абсцисс. Но главное тут, это то, что оба арктангенса проходят через общую точку 0! И получается, при вычитании, 0-0...т.е. результирующий график проходит также через 0. С другой стороны, arctan(x) также проходит через 0 и больше полученную в левой части уравнения кривую не пересекает. Т.е. ответ x = 0
arctan(x/5)-arctan(x/7) представляет собой график арктангенса, из которого вычели график арктангенса с меньшим аргументом. Это очень похоже на тот же арктангенс, который идет вдоль оси абсцисс. Но главное тут, это то, что оба арктангенса проходят через общую точку 0! И получается, при вычитании, 0-0...т.е. результирующий график проходит также через 0. С другой стороны, arctan(x) также проходит через 0 и больше полученную в левой части уравнения кривую не пересекает. Т.е. ответ x = 0
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно