а) Число 99 является наибольшим двузначным числом.
б) Очевидно, что в двузначном числе на первом месте нужно взять цифру 1, а на второе место - наименьшую цифру из заданных и образуется число, которое делится на 9(число делится на 9, если сумма цифра делится на 9).
18 — наименьшее число, кратное 9. (сумма цифр 1 + 8 = 9 - делится на 9)
в) Число четное, если оно делится на 2.
Пусть на последнем месте стоит цифра 0, тогда на первом месте можно использовать любые цифры из оставшиеся 4.
Фиксируем теперь цифру 4 на последнее место, тогда на первое место можно использовать цифры: 1;4;8;9 - 4 варианта
Аналогично фиксируем цифру 8 на последнее место двузначного числа, тогда на первое место используются цифры: 1;4;8;9.
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.а) Число 99 является наибольшим двузначным числом.
б) Очевидно, что в двузначном числе на первом месте нужно взять цифру 1, а на второе место - наименьшую цифру из заданных и образуется число, которое делится на 9(число делится на 9, если сумма цифра делится на 9).
18 — наименьшее число, кратное 9. (сумма цифр 1 + 8 = 9 - делится на 9)
в) Число четное, если оно делится на 2.
Пусть на последнем месте стоит цифра 0, тогда на первом месте можно использовать любые цифры из оставшиеся 4.
Фиксируем теперь цифру 4 на последнее место, тогда на первое место можно использовать цифры: 1;4;8;9 - 4 варианта
Аналогично фиксируем цифру 8 на последнее место двузначного числа, тогда на первое место используются цифры: 1;4;8;9.
Всего четных чисел составить можно 4 + 4 + 4 = 12
г) 40; 48; 80; 88 — числа, кратные 8