Представим это всё в виде графа: вершины - дети. Проведём от одной вершины к другой стрелку, если первый ребенок может писать 2-му СМС. Пусть, вершин К. Из каждой вершины выходит n стрелок, поэтому всего стрелок n*K. При этом, для любой пары человек, между ними должна быть хотя-бы 1 стрелка. Значит, стрелок хотя-бы K*(K-1)/2 (именно столько пар детей).
n*K ≥ K*(K-1)/2
n ≥ (K-1)/2
2n+1 ≥ K
Значит, наибольшее кол-во детей равно 2n+1. Приведём пример, когда детей ровно 2n+1.
Расставим их по кругу, и пусть каждый пишет СМС следующим n по часовой стрелке. Тогда любой человек получает СМС от предыдущих n, а пишет следующим n, то есть охвачены все 2n+1 человек (включая его).
2n+1
Объяснение:
Представим это всё в виде графа: вершины - дети. Проведём от одной вершины к другой стрелку, если первый ребенок может писать 2-му СМС. Пусть, вершин К. Из каждой вершины выходит n стрелок, поэтому всего стрелок n*K. При этом, для любой пары человек, между ними должна быть хотя-бы 1 стрелка. Значит, стрелок хотя-бы K*(K-1)/2 (именно столько пар детей).
n*K ≥ K*(K-1)/2
n ≥ (K-1)/2
2n+1 ≥ K
Значит, наибольшее кол-во детей равно 2n+1. Приведём пример, когда детей ровно 2n+1.
Расставим их по кругу, и пусть каждый пишет СМС следующим n по часовой стрелке. Тогда любой человек получает СМС от предыдущих n, а пишет следующим n, то есть охвачены все 2n+1 человек (включая его).
б) 64x^6 - 1/27y^3z^3 = (4x^2)^3 - (1/3yz)^3 = (4x^2 - 1/3yz)(16x^4+4/3x^2yz + 1/9y^2z^2)
в) 7a^3 - 0,007 = 7(a^3 - 0,001) = 7(a^3 - 0,1^3) = 7(a - 0,1)(a^2+0,1a+0,01)
г) (b + 2)^3 - (b - 2)^3 = (b + 2 - b + 2)(b^2+4b+4 + b^2-4+b^2-4b+4)=
= 4(3b^2+ 4)
a) (4a + b)(16a^2 - 8ab - b^2) = 64a^3 + b^3 - неверно.
( 4a + b)( 16a^2 - 4ab + b^2) = 64a^3 + b^3 - верно.
б) (2a + 3b)(4a^2 - 6ab + 9b^2) = 8a^3 - 27b^3 - неверно.
(2a - 3b)(4a^2 + 6ab + 9b^2)= 8a^3 - 27b^3 - верно.