Исследование точек экстремума функции проведём по первой производной функции. Первая производная равна y'(x)=3*x²-6*x, её значения равны нулю х1=0 (производная меняет знак с + на минус, так что эта точка - точка локального максимума) х2=2 (производная меняет знак с минуса на =, так что эта точка - точка локального минимума). По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
sin (x/2)=2 sin (x/4)cos(x/4) cos(x/2)=cos²(x/4)-sin²(x/4) 1=sin²(x/4)+cos²(x/4)
Уравнение примет вид: 2 sin (x/4)cos(x/4)-3·(cos²(x/4)-sin²(x/4))=3·(sin²(x/4)+cos²(x/4)) или 2 sin (x/4)cos(x/4)-3·cos²(x/4)+ 3·sin²(x/4)=3·sin²(x/4)+ 3·cos²(x/4)
2 sin (x/4)cos(x/4)-6·cos²(x/4)=0
2·cos(x/4)·(sin(x/4)-3cos(x/4))=0
cos(x/4)=0 или sin(x/4)-3cos(x/4)=0
х/4=π/2 + πk, k∈ Z или tg(x/4)=3 x=2π+4πk,k∈Z x/4=arctg 3 + πn, n∈Z x=4arctg 3 + 4πn, n∈Z
По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
sin (x/2)=2 sin (x/4)cos(x/4)
cos(x/2)=cos²(x/4)-sin²(x/4)
1=sin²(x/4)+cos²(x/4)
Уравнение примет вид:
2 sin (x/4)cos(x/4)-3·(cos²(x/4)-sin²(x/4))=3·(sin²(x/4)+cos²(x/4))
или
2 sin (x/4)cos(x/4)-3·cos²(x/4)+ 3·sin²(x/4)=3·sin²(x/4)+ 3·cos²(x/4)
2 sin (x/4)cos(x/4)-6·cos²(x/4)=0
2·cos(x/4)·(sin(x/4)-3cos(x/4))=0
cos(x/4)=0 или sin(x/4)-3cos(x/4)=0
х/4=π/2 + πk, k∈ Z или tg(x/4)=3
x=2π+4πk,k∈Z x/4=arctg 3 + πn, n∈Z
x=4arctg 3 + 4πn, n∈Z
ответ. x=2π + 4πk,k∈Z ; x=4arctg 3 + 4πn, n∈Z