Знайти знаменнік і десятній член геометричної прогресії (bn): 5; -10; 20...
2. Знайти знаменник геометричної прогресії (bn) якщо b12= 24, b13 = 4.
3. Знайдіть суму:
1) перших п'яти членів геометричної прогресії (bn) , якщю b1= 625, q = 0,2;
2) перших шести членів геометричної прогресії (bn): 18; 24; 32, ...,
3) перших п'ятII членів геометричної прогресії (b), якщо вона задана формулою загального члена b = 5*2n-1
Нужно раскрыть скобки по формулам сокращенного умножения
Сначала раскроем (а+1)во второй степени,получится
а в квадрате +2а+1
Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени
-(4а в квадрате +12а+9 )
Раскроем скобки и получится
-4а в квадрате -12а-9
В итоге получилось
а в квадрате +2а+1-4а в квадрате -12а-9
Находим подобные и получается
-3 а в квадрате -10 а -8=0
Теперь решаем дискриминантом
Д(дискриминант)=корню из четырех ,то есть двум
А1= -2 целые одна третья
А2= -1
Второе уравнение решается аналогично
25 с в квадрате +80с +64 -с в квадрате +20с-100=0
Что-бы было удобней вычитать Д сократим все на два,и получится
6с в квадрате+25с-9=0
Д=корень из 841 =29
С1=1/3
С2=11/3=3 целых 2/3
Подробное объяснение:
1) Ищем нули функции:
первая скобка равна нулю при х=-2
вторая скобка равна нулю при х=4
2) Рисуем числовую ось и расставляем на ней найденные нули
функции - точки -2 и 4
(-2)(4)
Точки рисуем с пустыми кружочками ("выколотые"), т.к.
неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная
слева-направо. Для этого берём любую удобную для подсчёта
точку из интервала, подставляем её вместо икс и считаем знак:
1. х=-100 -100+2 <0 знак минус
-100-4 <0 знак минус
минус*минус=плюс
Ставим знак плюс в крайний левый интервал
+
(-2)(4)
2. аналогично,
х=0 0+2 >0 знак плюс
0-4 <0 знак минус
плюс*минус=минус
+ _
(-2)(4)
3. x=100 100+2>0 знак плюс
100-4>0 знак плюс
плюс*плюс=плюс
+ - +
(-2)(4)
Итак, знаки на интервалах мы расставили.
Смотрим на знак неравенства: < 0 Значит, нам надо взять
только те интервалы, где стоят минусы.
В данном случае, такой интервал один (-2;4)
Это и есть ответ.
Теперь краткая запись решения:
(х+2)(х-4)<0
+ - +
(-2)(4)
x∈(-2;4)
ответ: (-2;4)