Пусть один Боря чистит бассейн за b ч, Вова за v ч, Саша за s ч. За 1 час они очистят соответственно 1/b, 1/v, 1/s часть. Боря и Вова вместе за 1 ч очистят 1/9 часть бассейна. Вова и Саша вместе 1/12 часть, а Боря и Саша 1/18 часть. { 1/b + 1/v = 1/9 { 1/v + 1/s = 1/12 { 1/b + 1/s = 1/18 Сложим все три уравнения 1/b + 1/v + 1/v + 1/s + 1/b + 1/s = 1/9 + 1/12 + 1/18 2/b + 2/v + 2/s = 4/36 + 3/36 + 2/36 = 9/36 = 1/4 Делим все на 2 1/b + 1/v + 1/s = 1/8 За 1 час они втроем очистят 1/8 часть бассейна. А весь бассейн - за 8 часов.
1.)Предприятие изготовило за квартал 500 насосов, из которых 60% имели высшую категорию качества. Сколько насосов высшей категории качества изготовило предприятие?
Решение:
Найдем 60% от 500 (общее количество насосов).
60 % = 0,6
500 · 0,6 = 300 насосов высшей категории качества.
ответ: 300 насосов высшей категории качества.
2.). За месяц на предприятии изготовили 500 приборов. 20% изготовленных приборов не смогли пройти контроль качества. Сколько приборов не контроль качества? Решение. Нужно найти 20% от общего количества изготовленных приборов 20% = 0,2. 500 * 0,2 = 100. 100 из общего количества изготовленных приборов контроль не Готовясь к экзамену, школьник решил 38 задач из пособия для самоподготовки. Что составляет 23% числа всех задач в пособии. Сколько всего задач собрано в этом пособии для самоподготовки? Решение. Мы не знаем, сколько всего задача в пособии. Но зато нам известно, что 38 задач составляют 25% от общего их количества. Запишем 23% в виде дроби: 0,23. Далее нам следует известную нам часть целого разделить на ту долю, которую она составляет от всего целого: 38/0,25 = 38 * 100/25 = 152. Именно 152 задачи включили в этот сборник. 4.) В классе 30 учеников. 14 из них – девочки. Сколько процентов девочек в классе? Решение. Чтобы узнать, какой процент составляет одно число от другого, нужно то число, которое требуется найти, разделить на общее количество и умножить на 100%. Значит, 14/30*100% = 7/15*100% = 7*100%/15 = 47%.
За 1 час они очистят соответственно 1/b, 1/v, 1/s часть.
Боря и Вова вместе за 1 ч очистят 1/9 часть бассейна.
Вова и Саша вместе 1/12 часть, а Боря и Саша 1/18 часть.
{ 1/b + 1/v = 1/9
{ 1/v + 1/s = 1/12
{ 1/b + 1/s = 1/18
Сложим все три уравнения
1/b + 1/v + 1/v + 1/s + 1/b + 1/s = 1/9 + 1/12 + 1/18
2/b + 2/v + 2/s = 4/36 + 3/36 + 2/36 = 9/36 = 1/4
Делим все на 2
1/b + 1/v + 1/s = 1/8
За 1 час они втроем очистят 1/8 часть бассейна.
А весь бассейн - за 8 часов.
Решение:
Найдем 60% от 500 (общее количество насосов).
60 % = 0,6
500 · 0,6 = 300 насосов высшей категории качества.
ответ: 300 насосов высшей категории качества.
2.). За месяц на предприятии изготовили 500 приборов. 20% изготовленных приборов не смогли пройти контроль качества. Сколько приборов не контроль качества?
Решение. Нужно найти 20% от общего количества изготовленных приборов 20% = 0,2. 500 * 0,2 = 100. 100 из общего количества изготовленных приборов контроль не Готовясь к экзамену, школьник решил 38 задач из пособия для самоподготовки. Что составляет 23% числа всех задач в пособии. Сколько всего задач собрано в этом пособии для самоподготовки?
Решение. Мы не знаем, сколько всего задача в пособии. Но зато нам известно, что 38 задач составляют 25% от общего их количества. Запишем 23% в виде дроби: 0,23. Далее нам следует известную нам часть целого разделить на ту долю, которую она составляет от всего целого: 38/0,25 = 38 * 100/25 = 152. Именно 152 задачи включили в этот сборник.
4.) В классе 30 учеников. 14 из них – девочки. Сколько процентов девочек в классе?
Решение. Чтобы узнать, какой процент составляет одно число от другого, нужно то число, которое требуется найти, разделить на общее количество и умножить на 100%. Значит, 14/30*100% = 7/15*100% = 7*100%/15 = 47%.