Это легко решается. Если график функции пересекает ось у, то в данной точке координаты точки х=0. А сколько они равны "у" можно подставив х=0 в формулу прямой. и, наоборот, при пересечении прямой оси х, координата точки пересечения у=0. Подставим и найдем. в) у = 1,2х + 6 при х=0 ; у = 1,2*0 + 6 = 6 при у=0; 0 = 1,2х + 6 ; х = -5 точки пересечения прямой у = 1,2х + 6 с осями координат имеют координаты (0;6) и (-5;0)
г) у = -5х +2 при х=0 ; у = (-5)*0 + 2 = 2 при у=0; 0 = (-5)х + 2 ; х = 0,4 точки пересечения прямой у = -5х + 2 с осями координат имеют координаты (0; 2) и (0,4; 0)
Если график функции пересекает ось у, то в данной точке координаты точки х=0. А сколько они равны "у" можно подставив х=0 в формулу прямой.
и, наоборот, при пересечении прямой оси х, координата точки пересечения у=0. Подставим и найдем.
в) у = 1,2х + 6
при х=0 ; у = 1,2*0 + 6 = 6
при у=0; 0 = 1,2х + 6 ; х = -5
точки пересечения прямой у = 1,2х + 6 с осями координат имеют координаты (0;6) и (-5;0)
г) у = -5х +2
при х=0 ; у = (-5)*0 + 2 = 2
при у=0; 0 = (-5)х + 2 ; х = 0,4
точки пересечения прямой у = -5х + 2 с осями координат имеют координаты (0; 2) и (0,4; 0)
x = k/3; k € Z
Объяснение:
Область определения
cos(П/2 - 2Пх) ≠ 0
П/2 - 2Пх ≠ П/2 + Пm; m € Z
x ≠ - m/2; m € Z
Формулы приведения.
sin(П - 7Пх) = sin(7Пх)
sin(П/2 + 7Пх) = cos(7Пх)
sin(П - 2Пх) = sin(2Пх)
cos(П/2 - 2Пх) = sin(2Пх)
Подставляем.
sin^2(7Пх) + cos^2(7Пх) = sin(2Пх) / sin(2Пх) + sin(3Пx)*cos(Пх/2)
1 = 1 + sin(3Пх)*cos(Пх/2)
sin(3Пх)*cos(Пх/2) = 0
Если произведение равно 0, то один из множителей равен 0.
1) sin(3Пх) = 0
3Пх = П*k; k € Z
x1 = k/3; k € Z - это решение.
2) cos(Пх/2) = 0
Пх/2 = П/2 + П*n; n € Z
x2 = 1 + 2n; n € Z
x ≠ - m/2; m € Z
Но при любом n можно подобрать такое m, что будет
x2 = 1 + 2n = - m/2
Поэтому никакое х2 не подходит по области определения.