1) Прямая РМ является серединным перпендикуляром по отношению а к отрезку АС. Так как прямая РМ проходит через середину данного отрезка , и перпендикулярна ему. Любая точка , лежащая на серединном перпендикуляре, равноудалена от концов отрезка. Следовательно, отрезок СМ равен отрезку АМ ⇒ АМ=13 см.Теперь найдем отрезок МВ.Треугольник СМВ равнобедренный . Пусть угол ∠А=α, поскольку треугольник АМС равнобедренный , то угол РСМ тоже равен α. Но сумма острых углов в прямоугольном треугольнике равна 90°, и угол МСВ=90-α, но угол МВС тоже равен 90°-α ⇒ Треугольник МСВ равнобедренный, и его боковые стороны равны 13 см.Гипотенуза равна сумме двух этих отрезков АВ=АМ+МВ=13*2=26
(7m-n) - (7m-n)(7m+n) = 0
(7m-n)(1 - 7m+n) = 0
2) 4x^2 - 4xy + y^2 - 16 = (2x-y)^2 - 16 (мы свернули в формулу первые три слагаемые) = (2x-y-4)(2x-y+4)
3) xy^4 - 2y^4 - xy +2y = y^4(x-2) - y(x-2) = (x-2)(y^4 - y)
4) 9 - x^2 - 2xy - y^2 = (делаем то же самое, что в пункте 2, но с последними тремя слагаемыми) 9 - (x+y)^2 = (3-x-y)(3+x+y)
Во всех четырёх пунктах я применяла формулы сокращённого умножения:
a^2 + 2ab + b^2 = (a+b)^2
a^2 - b^2 = (a-b)(a+b)