Хорда АВ делит окружность на две части, градусные меры которых относятся как 9:27. Под каким углом видна эта хорда из точки С, принадлежащей меньшей дуге окружности?
Необходимо найти угол АСВ. Обозначим центр точкой О. Построим центральный угол АОВ, так же построим вписанный угол ADB.Для начала определим угловые меры дуг АСВ и ADB. Сказано, что хорда AB делит окружность на две части, градусные величины которых относятся как 5:7. Введём коэффициент пропорциональности х, получим: 5х+7х=360
12х=360
х=30
Значит хорда АВ делит окружность на две части градусные величины которых равны:
дуга асв 5 *30=150
дуга адв 7*30=210
Воспользуемся свойством вписанного угла. Известно, что он равен половине центрального угла, опирающегося на ту же дугу. В данном случае
угол адв =0.5*150=75
Рассмотрим четырёхугольник ADBC. Известно, что сумма противоположных углов четырёхугольника вписанного в окружность равна 1800, значит
105
Объяснение:
Необходимо найти угол АСВ. Обозначим центр точкой О. Построим центральный угол АОВ, так же построим вписанный угол ADB.Для начала определим угловые меры дуг АСВ и ADB. Сказано, что хорда AB делит окружность на две части, градусные величины которых относятся как 5:7. Введём коэффициент пропорциональности х, получим: 5х+7х=360
12х=360
х=30
Значит хорда АВ делит окружность на две части градусные величины которых равны:
дуга асв 5 *30=150
дуга адв 7*30=210
Воспользуемся свойством вписанного угла. Известно, что он равен половине центрального угла, опирающегося на ту же дугу. В данном случае
угол адв =0.5*150=75
Рассмотрим четырёхугольник ADBC. Известно, что сумма противоположных углов четырёхугольника вписанного в окружность равна 1800, значит
угол асв=185-75=105
ответ: 105