В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

1) Da pro me. Da pro auctore. Pro usu proprio. 2) Recipe Iodum per se ad usum internum. 3) Statim da medicamentum. 4) Da citissime. 5) “Ubi pus, ibi incisio”. 6) “Ubi

pus, ibi evacua”. 7) Insulinum lente, Insulinum semilente, Insulinum ultralente. 8) Sume medicamentum per se. 9) Spiritus Vini optime rectificatus. 10) Pulvis modice grossus.

11) Pulvis longe subtilissimus. 12) Pulvis longe grossissimus. 13) Statim praepara et da medicamentum. 14) Bolus alba ut constituens ad praeparationem pulverum atque per se adhibetur. 15) Rhizoma minutim concisum. 16) “Omnia mea mecum (cum me) porto”. 17) “Medice, cura te ipsum”. 18) “De mortius aut bene, aut nihil”. 19) “Non multa, sed multum”. 20) “Ubi concordia, ibi victoria”.

Показать ответ
Ответ:
PetrovnaSasha
PetrovnaSasha
06.10.2021 13:40
1) Докажем, что АВ ⊥ ОО1.
В ΔОАО1 и ΔОВО1:
ОА = ОВ (как радиусы),
О1А = О1В (как радиусы),
ОО1 — общая.
Таким образом, ΔОАО1 = ΔОВО1 по 3-му признаку равенства треугольников, откуда ∠AOK = ∠KOB, ∠AO1K = ∠BO1K.
В ΔАОВ:
ОА = ОВ, следовательно, ΔАОВ — равнобедренный, ∠AOK = ∠KOB, таким образом, OK — биссектриса, которая является и высотой, т.к. ΔАОВ — равнобедренный, то есть OK ⊥ АВ.
Таким образом, АВ ⊥ ОО1.
2) Докажем, что окружности не могут пересекаться более чем в двух различных точках.
Допустим, что две окружности с центрами О и О1 пересекаются хотя бы в трех различных точках А, В, С, тогда из п. 1 АС ⊥ ОО1, АВ ⊥ ОО1, но это невозможно, так как через данную точку А можно провести одну и только одну прямую, перпендикулярную ОО1.
Таким образом, мы пришли к противоречию.
0,0(0 оценок)
Ответ:
karkarich68
karkarich68
06.10.2021 13:40
1) Докажем, что АВ ⊥ ОО1.
В ΔОАО1 и ΔОВО1:
ОА = ОВ (как радиусы),
О1А = О1В (как радиусы),
ОО1 — общая.
Таким образом, ΔОАО1 = ΔОВО1 по 3-му признаку равенства треугольников, откуда ∠AOK = ∠KOB, ∠AO1K = ∠BO1K.
В ΔАОВ:
ОА = ОВ, следовательно, ΔАОВ — равнобедренный, ∠AOK = ∠KOB, таким образом, OK — биссектриса, которая является и высотой, т.к. ΔАОВ — равнобедренный, то есть OK ⊥ АВ.
Таким образом, АВ ⊥ ОО1.
2) Докажем, что окружности не могут пересекаться более чем в двух различных точках.
Допустим, что две окружности с центрами О и О1 пересекаются хотя бы в трех различных точках А, В, С, тогда из п. 1 АС ⊥ ОО1, АВ ⊥ ОО1, но это невозможно, так как через данную точку А можно провести одну и только одну прямую, перпендикулярную ОО1.
Таким образом, мы пришли к противоречию.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота