Прямая и окружность могут располагаться относительно друг друга в трех вариантах:
1) Не пересекаться, то есть не иметь ни одной общей точки.
2) Касаться, то есть иметь только одну общую точку, тогда прямая называется касательной к окружности.
3) Пересекаться, то есть иметь две общие точки.
В условии задачи сказано, что окружность проходит через точку С и касается прямой ВС. Значит прямая ВС кроме точки касания других общих точек с окружностью иметь не может, следовательно, окружность касается с прямой ВС в точке С (как показано на рисунке).
Рассмотрим треугольники ABC и CDB.
∠B - общий
∠DAC является вписанным в окружность и опирается на дугу CD. Т.е. равен половине ее градусной меры.
∠BCD обхватывает дугу CD как касательная и хорда и тоже равен половине градусной меры дуги CD (по четвертому свойству углов).
Следовательно, углы DAC и BCD равны.
Тогда, по первому признаку подобия треугольников, эти треугольники подобны.
Следовательно:
AC/CD=BC/BD=AB/BC
AC/CD=BC/BD
40/24=45/BD =>BD=24*45/40=27
BC/BD=AB/BC
45/27=AB/45 => AB=45*45/27=75
AD=AB-BD=75-27=48
Ответ: AD=48
Прямая и окружность могут располагаться относительно друг друга в трех вариантах:
1) Не пересекаться, то есть не иметь ни одной общей точки.
2) Касаться, то есть иметь только одну общую точку, тогда прямая называется касательной к окружности.
3) Пересекаться, то есть иметь две общие точки.
В условии задачи сказано, что окружность проходит через точку С и касается прямой ВС. Значит прямая ВС кроме точки касания других общих точек с окружностью иметь не может, следовательно, окружность касается с прямой ВС в точке С (как показано на рисунке).
Рассмотрим треугольники ABC и CDB.
∠B - общий
∠DAC является вписанным в окружность и опирается на дугу CD. Т.е. равен половине ее градусной меры.
∠BCD обхватывает дугу CD как касательная и хорда и тоже равен половине градусной меры дуги CD (по четвертому свойству углов).
Следовательно, углы DAC и BCD равны.
Тогда, по первому признаку подобия треугольников, эти треугольники подобны.
Следовательно:
AC/CD=BC/BD=AB/BC
AC/CD=BC/BD
40/24=45/BD =>BD=24*45/40=27
BC/BD=AB/BC
45/27=AB/45 => AB=45*45/27=75
AD=AB-BD=75-27=48
Ответ: AD=48
1) Не пересекаться, то есть не иметь ни одной общей точки.
2) Касаться, то есть иметь только одну общую точку, тогда прямая называется касательной к окружности.
3) Пересекаться, то есть иметь две общие точки.
В условии задачи сказано, что окружность проходит через точку С и касается прямой ВС. Значит прямая ВС кроме точки касания других общих точек с окружностью иметь не может, следовательно, окружность касается с прямой ВС в точке С (как показано на рисунке).
Рассмотрим треугольники ABC и CDB.
∠B - общий
∠DAC является вписанным в окружность и опирается на дугу CD. Т.е. равен половине ее градусной меры.
∠BCD обхватывает дугу CD как касательная и хорда и тоже равен половине градусной меры дуги CD (по четвертому свойству углов).
Следовательно, углы DAC и BCD равны.
Тогда, по первому признаку подобия треугольников, эти треугольники подобны.
Следовательно:
AC/CD=BC/BD=AB/BC
AC/CD=BC/BD
40/24=45/BD =>BD=24*45/40=27
BC/BD=AB/BC
45/27=AB/45 => AB=45*45/27=75
AD=AB-BD=75-27=48
Ответ: AD=48
1) Не пересекаться, то есть не иметь ни одной общей точки.
2) Касаться, то есть иметь только одну общую точку, тогда прямая называется касательной к окружности.
3) Пересекаться, то есть иметь две общие точки.
В условии задачи сказано, что окружность проходит через точку С и касается прямой ВС. Значит прямая ВС кроме точки касания других общих точек с окружностью иметь не может, следовательно, окружность касается с прямой ВС в точке С (как показано на рисунке).
Рассмотрим треугольники ABC и CDB.
∠B - общий
∠DAC является вписанным в окружность и опирается на дугу CD. Т.е. равен половине ее градусной меры.
∠BCD обхватывает дугу CD как касательная и хорда и тоже равен половине градусной меры дуги CD (по четвертому свойству углов).
Следовательно, углы DAC и BCD равны.
Тогда, по первому признаку подобия треугольников, эти треугольники подобны.
Следовательно:
AC/CD=BC/BD=AB/BC
AC/CD=BC/BD
40/24=45/BD =>BD=24*45/40=27
BC/BD=AB/BC
45/27=AB/45 => AB=45*45/27=75
AD=AB-BD=75-27=48
Ответ: AD=48