В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Mihan4ik
Mihan4ik
23.06.2020 09:20 •  Другие предметы

Что означает выражение «Выполнить анализ формы детали»? Разработать систему определения формы

Расчленить деталь на геометрические тела; назвать их и рассказать, как они расположены относительно друг друга в пространстве

Начертить общий вид детали

Показать ответ
Ответ:
6Мицуки6
6Мицуки6
04.11.2020 14:11

Напряжение u(t)и ток i(t)изменяются по синусоидальному закону с одной частотой, следовательно, мгновенные значения тока и напряжения в цепи записываются:

u = Um sin(t+u ),

i = Im sin(t+i),

где Um - амплитудное значение напряжения; Im - амплитудное значение тока;  = 2f - угловая частота; f = 1/T - частота синусоидальных напряжения и тока; Т - период; u - начальная фаза синусоидального напряжения; i - начальная фаза синусоидального тока

 = 2f= 250= 314 рад/с ; u= - /6 = -30 о ; i=  /4 = 45 о .

Начальная фаза напряжения uимеет знак (-), так как синусоида u(t)сдвинута по оси абсцисс вправо от начала координат (величина самой функции при t =0 имеет отрицательное значение). Напомним, что началом любой синусоиды полагается точка перехода функции из отрицательного значения в положительное значение. Поэтому же начальная фаза тока имеет знак (+), так как синусоида i(t) сдвинута по оси абсцисс влево от начала координат. Таким образом имеем:

u = 141sin (314t– 30о) В,i = 2,82sin (314t + 45о) А.

Синусоидальные функции времени изображаются также комплексными числами которые, по сути, аналитически описывают вращающиеся радиус-векторы на комплексной плоскости, рассматриваемые в момент времени t =0.

Комплексные изображения синусоидальных величин чаще всего записываются для действующих значений. Поэтому в первую очередь определим действующие значения тока и напряжения данной цепи:

Представим u(t) и i(t) в комплексной форме (показательная форма записи комплексных чисел):

, .

0,0(0 оценок)
Ответ:
ОвССянка
ОвССянка
27.08.2020 09:50

Километр — слишком мелкая единица для космических расстояний. Даже от Земли до Солнца почти 150 млн км, а до ближайшей звезды — Проксимы в созвездии Кентавра (Центавра) — 40 260 млрд км. Запишите цифрами: 40 260 000 000 000 км. Такие длинные числа тяжело сравнивать. Намного нагляднее выражается расстояние до звезд и галактик в длительности путешествия их света до нас.

Объяснение:

Например, от Солнца луч света добирается до Земли за 500 секунд, или за 8,3 минуты. А от Проксимы — за 4,2 года. Правда ведь, легко сравнить одну школьную переменку и половину школьной жизни. От центра нашей Галактики свет добирается до нас за 25 000 лет. Когда он тронулся в путь, мамонты еще гуляли по Земле! А до соседней галактики — Туманности Андромеды — 2,5 млн световых лет. Поэтому, глядя на Туманность Андромеды (а ее видно даже невооруженным глазом на темном загородном небе), мы переносимся в эпоху, когда мамонтов на Земле еще не было! Как видим, световые годы — вполне подходящий масштаб для космических расстояний.

Парсеки (пк) — это единицы длины примерно того же масштаба, что и световые годы: 1 парсек равен 3,26 светового года. Но для астрономических вычислений они удобнее. Расстояние до не слишком далеких объектов астрономы измеряют по их видимому угловому смещению при движении Земли по орбите. Это смещение называется параллаксом. Чем дальше объект, тем меньше его параллакс. Если параллакс составляет 1 угловую секунду, то расстояние составляет 1 парсек. Само это слово как раз и образовано от «параллакс» и «секунда». Если параллакс равен 0,1 угловой секунды, то расстояние составляет 10 парсеков. Для астрономов докомпьютерной эпохи это было очень удобно. Измерил параллакс, поделил единицу на его значение — и сразу можешь записать расстояние в парсеках. Это и правда хороший масштаб. Расстояние до Проксимы Кентавра (Центавра), к примеру, 1,3 парсека. Между окружающими нас звездами тоже расстояние около 1 парсека. Выражать такие расстояния в километрах не очень удобно, ведь 1 парсек равен 30 857 млрд км.

0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота