1) z1+z2=(2–3i)+(4+3i)=2–3i+4+3i=6;
2) z1–z2=(2–3i)–(4+3i)=2–3i–4–3i=–2–6i;
3) z1·z2=(2–3i)·(4+3i)=2·4–3i·4+2·(3i)–(3i)·(3i)=8–12i+6i+9=17–6i ;
4) z1:z2=2−3i4+3i=(2−3i)⋅(4−3i)(4+3i)(4−3i)=
=2⋅4−3i⋅4−2⋅3i−3i⋅3i)42−(3i)2==
=8−12i−6i+9)16+9=17−18i25
5) решить квадратное уравнение .
a)
x2+8x+20=0
D=82–4·20=64–80=–16
√D=√16·√–1=4i
x1=(–8–4i)/2=–4–2i; x2=(–8+4i)/2=–4+2i
б)
25x2+12x+4=0
D=122–4·25·4=–256
√D=√256·√–1=16i
x1=(–12–16i)/50=(–6–8i)/25; x2=(–12+16i)/50=(–6+8i)/25;]
1) z1+z2=(2–3i)+(4+3i)=2–3i+4+3i=6;
2) z1–z2=(2–3i)–(4+3i)=2–3i–4–3i=–2–6i;
3) z1·z2=(2–3i)·(4+3i)=2·4–3i·4+2·(3i)–(3i)·(3i)=8–12i+6i+9=17–6i ;
4) z1:z2=2−3i4+3i=(2−3i)⋅(4−3i)(4+3i)(4−3i)=
=2⋅4−3i⋅4−2⋅3i−3i⋅3i)42−(3i)2==
=8−12i−6i+9)16+9=17−18i25
5) решить квадратное уравнение .
a)
x2+8x+20=0
D=82–4·20=64–80=–16
√D=√16·√–1=4i
x1=(–8–4i)/2=–4–2i; x2=(–8+4i)/2=–4+2i
б)
25x2+12x+4=0
D=122–4·25·4=–256
√D=√256·√–1=16i
x1=(–12–16i)/50=(–6–8i)/25; x2=(–12+16i)/50=(–6+8i)/25;]