В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Доведіть, що бісектриса зовнішнього кута при вершині рівнобедреного трикутника паралельна його основі

Показать ответ
Ответ:
Arina200531
Arina200531
17.04.2019 01:10
Доведения:
Нехай даний ∆АВС - рівнобедрений (АВ = ВС),
∟DBC - зовнішній кут ∟АВС при вершині В,
ВК - бісектриса ∟DBC, доведемо, що ВК ‖ АС.
Розглянемо ∆АВС. Так як ∆АВС - рівнобедрений,
то ∟A = ∟C = х. Зовнішній ∟DBC = ∟A + ∟C.
∟DBC = х + х = 2х.
∟DBK = ∟КBC = 1/2∟DBC = 2х/2 = х (ВК - бісектриса).
Розглянемо пряму ВК i AC та січну AD,
∟DBK i ∟BAC - відповідні, так як ∟DBK = ∟BAC = x, т ВК ‖ АС.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота