В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
24000006
24000006
02.07.2022 08:18 •  Другие предметы

Колебательный контур состоит из катушки индуктивностью 0,1 Гн и конденсатора. Максимальный ток в катушке 0,01 А, максимальное напряжение

Показать ответ
Ответ:
пацанка6
пацанка6
16.04.2019 23:00

ответ к заданию по физике
 Колебательный контур состоит из катушки индуктивно

0,0(0 оценок)
Ответ:
геля217
геля217
18.01.2024 15:29
Вова, отличный вопрос! Давай я проведу небольшой урок по теме колебательного контура и объясню тебе, как решить эту задачу.

Для начала, давай разберемся что такое колебательный контур. Колебательный контур - это электрическая система, состоящая из катушки с индуктивностью (L) и конденсатора (C), которая способна создавать и поддерживать электрические колебания.

В случае нашего задания, у нас есть катушка индуктивностью 0,1 Гн и конденсатор. Представим, что в начальный момент времени конденсатор полностью заряжен, а после размыкания цепи начинается невозмущенное колебание.

Теперь нам нужно найти максимальное напряжение на конденсаторе. Для этого воспользуемся формулой для резонансной частоты колебательного контура:

f = 1 / (2π√(LC))

Где f - частота колебаний, π - математическая константа (примерно равна 3,14159), L - индуктивность катушки, а C - ёмкость конденсатора.

Мы знаем индуктивность катушки равна 0,1 Гн. А вот ёмкость конденсатора не указана. Поэтому, давай предположим, что ёмкость конденсатора составляет 1 мкФ (1 * 10^(-6) Ф).

Тогда подставим значения в формулу:

f = 1 / (2π√(0,1 * 10^(-6) * 0,1))

f = 1 / (2π√(10^(-8)))

f = 1 / (2 * 3,14159 * 10^(-4))

f ≈ 1 / ( 6,28318 * 10^(-4))

f ≈ 1,59 * 10^3 Гц

Таким образом, резонансная частота колебательного контура составляет примерно 1,59 * 10^3 Гц.

Теперь нам нужно найти максимальное напряжение на конденсаторе. Для этого воспользуемся формулой для максимального напряжения на конденсаторе в колебательном контуре:

U_max = I_max / (2πfC)

Где U_max - максимальное напряжение на конденсаторе, I_max - максимальный ток в катушке, f - резонансная частота, а C - ёмкость конденсатора.

Мы знаем, что максимальный ток в катушке составляет 0,01 А, а резонансная частота равна 1,59 * 10^3 Гц. А ёмкость конденсатора предположительно равна 1 мкФ (1 * 10^(-6) Ф).

Теперь подставим все значения в формулу:

U_max = 0,01 / (2π * 1,59 * 10^3 * 1 * 10^(-6))

U_max = 0,01 / (2 * 3,14159 * 1,59 * 10^(-3))

U_max ≈ 0,01 / ( 6,28318 * 1,59 * 10^(-3))

U_max ≈ 0,01 / ( 9,999932)

U_max ≈ 0,001 В

Таким образом, максимальное напряжение на конденсаторе составляет примерно 0,001 В.

Надеюсь, это объяснение и пошаговое решение помогли тебе понять, как решить эту задачу. Если у тебя всё ещё остались вопросы, не стесняйся и задавай их! Я всегда готов помочь.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота