Угол NBA является вписанным для данной окружности. Опирается этот угол на дугу AN. градусная мера дуги AN = /NBA*2=11°*2=22° (по теореме о вписанном угле).
Градусная мера дуги ANB = 180° (т.к. AB - диаметр), следовательно, градусная мера дуги NB = дуга ANB - дуга AN = 180°-22°=158°
/NMB - тоже является вписанным в окружность и равен половине градусной меры дуги NB (по теореме).
/NMB=158°/2=79°
Ответ: /NMB=79°
Градусная мера дуги ANB = 180° (т.к. AB - диаметр), следовательно, градусная мера дуги NB = дуга ANB - дуга AN = 180°-22°=158°
/NMB - тоже является вписанным в окружность и равен половине градусной меры дуги NB (по теореме).
/NMB=158°/2=79°
Ответ: /NMB=79°