Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AP=18,
Рассмотрим четырехугольник PKBC.
PKBC вписан в окружность, следовательно выполняется условие: сумма противоположных углов четырехугольника равна 180° (условие того, что четырехугольник можно вписать в окружность).
Т.е. ∠PKB+∠BCP=180°
∠PKB+∠AKP=180° (т.к. это смежные углы).
Следовательно, ∠AKP=∠BCP
Рассмотрим треугольники ABC и AKP.
∠AKP=∠BCP (это мы выяснили чуть выше)
∠A - общий, тогда эти треугольники подобны (по признаку подобия).
Следовательно, KP/BC=AK/AC=AP/AB (из определения подобных треугольников).
Нас интересует равенство KP/BC=AP/AB
KP/BC=18/(1,2BC)
KP=18BC/(1,2BC)=15
Ответ: KP=15
PKBC вписан в окружность, следовательно выполняется условие: сумма противоположных углов четырехугольника равна 180° (условие того, что четырехугольник можно вписать в окружность).
Т.е. ∠PKB+∠BCP=180°
∠PKB+∠AKP=180° (т.к. это смежные углы).
Следовательно, ∠AKP=∠BCP
Рассмотрим треугольники ABC и AKP.
∠AKP=∠BCP (это мы выяснили чуть выше)
∠A - общий, тогда эти треугольники подобны (по признаку подобия).
Следовательно, KP/BC=AK/AC=AP/AB (из определения подобных треугольников).
Нас интересует равенство KP/BC=AP/AB
KP/BC=18/(1,2BC)
KP=18BC/(1,2BC)=15
Ответ: KP=15