В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

По данному интервальному распределению выборки объема n при уровне значимости а по критерию согласия Пирсона

Показать ответ
Ответ:
albinasaydilova
albinasaydilova
17.04.2019 00:00
Решение
Проверим гипотезу о том, что Х распределено по Нормальному закону с помощью критерия согласия Пирсона.
Где pi — вероятность попадания в i-й интервал случайной величины, распределенной по гипотетическому закону
Для вычисления вероятностей pi применим формулу и таблицу функции Лапласа
Таблица для расчета показателей.
Группы    Xi    Кол-во, fi    Xi * fi    (x - xср) * f    (x - xср)2 * f
-4 - -1    -2.5    72    -180    271.08    1020.62
-1 - 2    0.5    55    27.5    42.08    32.19
2 - 5    3.5    37    129.5    82.7    184.82
5 - 8    6.5    24    156    125.64    657.73
8 - 11    9.5    10    95    82.35    678.15
11 - 14    12.5    2    25    22.47    252.45
        200    253    626.31    2825.96
Средняя взвешенная
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т. е. отклонения от среднего).
Несмещенная оценка дисперсии - состоятельная оценка дисперсии.
Среднее квадратическое отклонение (средняя ошибка выборки).
Каждое значение ряда отличается от среднего значения 1.27 не более, чем на 3.76
Оценка среднеквадратического отклонения.
Интервалы группировки    Наблюдаемая частота ni    Ф(xi)    Ф(xi+1)    Вероятность pi попадания в i-й интервал    Ожидаемая частота npi    Слагаемые статистики Пирсона Ki
-4 - -1    72    0.23    0.42    0.19    38.02    30.37
-1 - 2    55    0.0793    0.23    0.15    29.96    20.93
2 - 5    37    0.34    0.0793    0.26    52.4    4.53
5 - 8    24    0.46    0.34    0.12    24.4    0.0065
8 - 11    10    0.5    0.46    0.032    6.4    2.03
11 - 14    2    0.5    0.5    0.00436    0.87    1.46
сумма    200                    59.31
Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение Kнабл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: [Kkp;+?).
Её границу Kkp = ?2(k-r-1;?) находим по таблицам распределения «хи-квадрат» и заданным значениям s, k (число интервалов), r=2 (параметры xcp и s оценены по выборке).
Kkp = 9.34840; Kнабл = 59.31
Наблюдаемое значение статистики Пирсона попадает в критическую область: Кнабл > Kkp, поэтому есть основания отвергать основную гипотезу. Данные выборки распределены
Не по нормальному закону.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота