Представьте, что ваш взрослый старший брат решил накопить на путешествие, о котором долго мечтал. За два года ему удаётся собрать 100 тыс. р. Но для оплаты поездки ему нужно накопить ещё 50 тыс. р. Уже накопленные сбережения он решает хранить дома. В то же время коммерческие банки предлагают заключить договор вклада на год со ставкой 10% годовых. Что бы вы посоветовали своему брату: положить деньги во вклад или оставить их на хранение дома? Сколько у вашего брата будет денег через год в каждом из вариантов, если он действительно сумеет отложить из своей зарплаты ещё 50 тыс. р.?
ответ:Сре́днее арифмети́ческое (в математике и статистике) — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины.
Объяснение:
надеюсь ведь вопрос некоректный
Пусть ΔАВС - равносторонний, AM i ВК - биссектрисы, пересекаются в т. А.
Докажем, что АО: ОМ = 2: 1.
В ΔАВС ∟А = ∟B = ∟С = 60 °.
∟ABK = ∟KBC = 1 / 2∟B = 60 °: 2 = 30 ° (ВК - биссектриса ∟B).
∟BAM = ∟MAC = 1 / 2∟A = 60 °: 2 = 30 ° (АМ - биссектриса ∟A).
В ΔABC равностороннем биссектриса является высотой. AM ┴ ВС, ВК ┴ АС.
Рассмотрим ΔВОМ (∟M = 90 °, AM ┴ ВС).
Пусть ОМ = х, тогда ОВ = 2 • ОМ = 2х (поскольку ∟OBM = 30 °).
Рассмотрим ΔАОВ:
∟BAO = ∟ABO = 30 °, тогда ΔАОВ - равнобедренный с основанием АВ.
Итак, АО = ВО = 2х.
АО: ОМ = 2х х = 2: 1.